期刊文献+

真空封装硅微陀螺品质因数的标定 被引量:5

Quality factor measurement of vacuum-packaged microgyroscopes
下载PDF
导出
摘要 建立了真空封装陀螺的无激励欠阻尼二阶系统模型,用于测量真空封装硅微陀螺的品质因数。对该模型进行理论推导,提出了一种时延常数测试方法。该方法首先利用锁相环路,驱动陀螺实现闭环谐振,获得较大的初始振幅。然后关断激励信号,通过放大电路和解调电路,记录硅微陀螺振荡幅值的衰减过程;用计算机通过Matlab GUI实时采集并拟合振幅衰减曲线,获得时间常数。最后,通过时间常数解算获得真空封装硅微陀螺的品质因数。对真空封装硅微陀螺品质因数的实验测试结果表明:该方法实测数据与理论分析模型的拟合度为99.999%,测试重复性为4.03%,优于传统的扫频测试法的重复性。对比时延常数法与锁相放大器扫频测试法的测试数据显示:时延常数法具有更高的测量精度和更高的测试效率。该方法可以推广到其它高真空封装MEMS器件的品质因数测量。 A under-damping second-order system model without excitation was proposed to measure the quality factor(Q factor) for a vacuum packaged microgyroseope. The model was analyzed theoreti- cally and a time decay constant method was presented. Firstly, an initial displacement of the seismic mass was obtained by exciting the microgyroscope to implement a closed loop resonance with a Phase Locked Loop (PLL). By releasing the excitation signal, the vibration amplitude decay curve was then acquired through demodulating the vibrating displacement signal and was transferred to a computer by a Field Programming Gate Array(FPGA) hardware and Matlab GUI software simultaneously. Final- ly, the Q factor of the vacuum packaged microgyroscope was calculated by exponentially fitting the envelope of decay curve. The experimental results show that the R-square value of the fitted curve reaches up to 99. 999% as compared to the measured data and the repeatability of the tested Q factor is 4.03%, much better than that of the frequency sweeping method. Comparing the measurement data of decay constant method and frequency sweeping method, the former shows better measurement accuracy and higher efficiency. The meth- od is also suitable for the measurements of microsensors with high Q factors.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第10期2708-2714,共7页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2011AA110102) 国家国际科技合作专项资助项目(No.2011DFA72370)
关键词 硅微陀螺 真空封装 品质因数 标定 时延常数法 扫频法 microgyroseope vacuum packaging quality factor calibration decay constant method frequency sweeping method
  • 相关文献

参考文献12

  • 1姜劭栋,裘安萍,施芹,苏岩.硅微陀螺仪正交耦合系数的计算及验证[J].光学精密工程,2013,21(1):87-93. 被引量:9
  • 2SCHOFIELD A R, TRUSOV A A, SHKEL A M. Versatile vacuum packaging for experimental study of resonant MEMS [C]. Micro Electro Mechanical System (MEMS), 2010 IEEE 23rd International Conference, 2010: 516-519. 被引量:1
  • 3施芹,苏岩,裘安萍,朱欣华.MEMS陀螺仪器件级真空封装技术[J].光学精密工程,2009,17(8):1987-1992. 被引量:24
  • 4贾方秀,裘安萍,施芹,苏岩.硅微振动陀螺仪设计与性能测试[J].光学精密工程,2013,21(5):1272-1281. 被引量:14
  • 5NIEDERMAYER A O, BRUNNMAIER T V, SELL J, et al: Methods for the robust measure- ment of the resonant frequency and quality factor of significantly damped resonating devices [J]. Meas. Sci. Technol. , 2012, 23 085107. R. 被引量:1
  • 6AJAMANI V, BUNTING C F, WEST J C. Differences in quality factor estimation in frequen- cy and time domain [C]. Electromagnetic Com- patibility (APEMC), 2012 : 505-508. 被引量:1
  • 7JEONG C, SEOK S, LEE B, et al: A study on resonant frequency and Q factor tunings forMEMS vibratory gyroscopes[J]. J. Micromech. Microeng, 2004,14 (2004) : 1530-1536. 被引量:1
  • 8BRUSCHI P, NANNINI A P F. Electrical meas- urements of the quality factor of microresonators and its dependence on the pressure[J]. Sensors and Actuators A, 2004, 114:21-29. 被引量:1
  • 9WANGL Y, DUX H, SU YZH, etal: Accura- cy analysis of quality factor measurement based on time domain method for MEMS resonators[C]. The 3rd International Conference of CSMNT , 2012. 被引量:1
  • 10MATHIAS H, PARRAIN F, GILLES J P, et al: Architecture for integrated MEMS resona- tors quality factor measurement [J]. DTIP of MEMS & MOEMS, 2007. 被引量:1

二级参考文献30

共引文献41

同被引文献41

  • 1王岩,张玲,邢朝洋.硅微谐振加速度计高精度相位闭环控制系统设计与实现[J].中国惯性技术学报,2014,12(5):688-692. 被引量:7
  • 2ZHONG Z Y, ZHANG W M, MENG G,etal.. Inclination effects on the frequency tuning of comb- driven resonators [J]. Journal of Microelectrome- chanical Systems, 2013, 22(4): 865-875. 被引量:1
  • 3NGUYEN C T C. Micromechanical resonators for oscillators and filters [C]. Proceedings of the 1995 IEEE International Ultrasonics Symposium, Seat- tle, WA, 1995: 489-499. 被引量:1
  • 4VILLE K, TOMI M, AARNE O,et al.. Nonlinear limits for single-crystal silicon microresonators [J]. Journal of Microelectromechanical Systems, 2004, 13(5) : 715-724. 被引量:1
  • 5MOORTHI P, LYNN K. Nonlinear behavior of SOI free-free mieromechanical beam resonator [J]. Sensors and Actuators A, 2008, 142: 203-210. 被引量:1
  • 6SHIN Q, QIU A, SU Y,et al.. Nonlinear oscilla- tion characteristics of MEMS resonator [C]. Pro- ceedings of the 2010 IEEE International Confer- ence on Mechatronics and Automation, Xi 'an , 2010 (8) : 1250-1253. 被引量:1
  • 7SAID E A, KANBER M S, TAYFUN A. A low-cost rate-grade nickel microgyroscope [J]. Sensors and Ac- tuators A, 2006, 132: 171-181. 被引量:1
  • 8SIEWE M, USAMA H H. Homoclinic bifurcation and chaos control in MEMS resonators [J]. Applied Mathematical Modelling, 2011, 35 : 5533-5552. 被引量:1
  • 9NAN C T, CHUNG Y S. Stability and resonance of micro-machined gyroscope under nonlinearity effects [J]. Nonlinear Dyn. , 2009, 56: 369-379. 被引量:1
  • 10EHSAN M M, HOSSEIN N P, AGHIL Y K,etal.. Chaos prediction in MEMS-NEMS resonators [J]. International Journal of Engineering Science, 2014, 82 : 74-83. 被引量:1

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部