期刊文献+

一类向量优化问题的弱有效解的Kuhn-Tucker充分条件

Kuhn-Tucker Optimality of Weakly Efficient Solutions for a Kind of Vector Optimization Problems
下载PDF
导出
摘要 在Banach空间中,利用几类广义不变凸的概念,获得了一类向量优化问题的弱有效解的Kuhn-Tucker型充分条件,改进和推广了已有文献中的一些相应结果. Using some concepts of generalized convexity in Banach spaces,the Kuhn-Tucker sufficient condition of weakly efficient solutions for a kind of vector optimization problems was obtained.The results improve and extend some of the existing results in the literature.
作者 蒋娅
出处 《宜宾学院学报》 2014年第6期1-2,共2页 Journal of Yibin University
基金 教育部科学技术重点项目(211163) 西华师范大学校基金青年项目(11A030)
关键词 弱有效解 最优性充分条件 广义ρ-不变凸 广义ρ-伪不变凸 广义ρ-拟不变凸 weakly efficient solutions sufficient optimality conditions general ρ-inconvexity general ρ-pseudo-inconvexity ρ-quasi-inconvexity
  • 相关文献

参考文献8

二级参考文献19

  • 1徐义红,刘三阳.近似锥-次类凸集值优化的严有效性[J].系统科学与数学,2004,24(3):311-317. 被引量:28
  • 2卢力,黄正海.Banach空间中向量最优化问题的充分条件[J].武汉城市建设学院学报,1996,13(2):69-75. 被引量:2
  • 3谢小凤,李泽民,何静.无穷维向量最优化问题的最优性条件[J].经济数学,2006,23(4):426-431. 被引量:1
  • 4HANSON M A.On Sufficiency of the Kuhn-Tucker conditions[J].Math.Anal.Appl,1981,80 (2):545-550. 被引量:1
  • 5LI Z M.A Theorem of the Alternative and its application to the optimization of set-valued maps[J].JoTA,1999,100 (2):365-375. 被引量:1
  • 6LI Z M.The optimality conditions for vector optimization of set-valued maps[J].JMAA,1999(237):413-424. 被引量:1
  • 7RONG W D,WU Y N.Characterizations of super efficicncy in conecomexlike vector optimization with set-valued maps[J].Math Meth OperRes,1998(48):247-258. 被引量:1
  • 8WEIR T,MOND B,CRAVEN B D.On Duality for weakly Minimized Vector Valued Optimization Problems[J].Optimization,1986,17 (6):711-721. 被引量:1
  • 9Li Z M.A Theorem of the Alternative and Its Application to The Optimization of Set-Valued Maps [J].Journal of optimization Theory and Application, 1999, 100 (2): 365-375. 被引量:1
  • 10Huang Y W.A Farkas-Minkowsld Type Altemative Theorem and Its Applications to Set-Valued Equiliborium Problems[J].Journal of Nonlinear and Convex Analysis, 2002,3(1):17-24. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部