期刊文献+

基于PSO-RBF神经网络的雷达目标识别 被引量:5

Radar Target Recognition Based on PSO-RBF Neural Network
下载PDF
导出
摘要 为提高雷达系统目标识别能力,对粒子群算法及RBF神经网络进行了分析。针对离子群算法(PSO)易陷入局部极小的缺陷,提出了基于自适应时变权重和局部搜索算子的改进PSO算法,并将该算法应用到RBF神经网络核函数参数的优化学习中,进行了雷达目标识别仿真实验。仿真结果表明,相对于标准PSO-RBF神经网络,改进算法不仅收敛速度快,且误差精度高,特别在干扰较强时,目标的识别率有较大提高。 In order to improve the ability of radar target recognition, particle swarm algorithm and ra- dial basis function(RBF) neural network are analyzed. As particle swarm optimization (PSO) algorithm is liable to trap in local minimum, an improved PSO neural network parameter selection of kernel function, algorithm is presented, which is applied to RBF and the radar target recognition simulation experi- merit is conducted. The Matlab simulation results show that, compared to the standard PSO-RBF neural network, the improved algorithm converges faster, has higher error precision, and target recognition rate is improved, especially in the strong disturbance
出处 《现代防御技术》 北大核心 2014年第5期115-120,共6页 Modern Defence Technology
关键词 一维距离像 粒子群算法 RBF神经网络 雷达目标识别 range profile particle swarm optimization ( PSO ) radial basis function ( RBF ) neuralnetwork radar target recognition
  • 相关文献

参考文献12

  • 1DU Lan, LIU Hong-wei, BAO Zheng. Radar HRRP Sta- tistical Recognition Based on Hyper Sphere Model [ J 1. Signal Processing, 2008,88 ( 5 ) : 1176 - 1190. 被引量:1
  • 2WILLIAM R L,GROSS D C,WESTERKAMP J J,et al. 1DHRRP data Analysis and ATR Assessment [ C ] Jj SPIE Conference on Algorithm for SAR Imagery. Orlan- do, Florida, 1998 : 1148 -1152. 被引量:1
  • 3Simon Haykin. Neural Networks: A Comprehensive Fonndation, Second Edifion [ M ]. US: Prentive Hall,1998. 被引量:1
  • 4张友民,李庆国,戴冠中,张洪才.一种RBF网络结构优化方法[J].控制与决策,1996,11(6):667-671. 被引量:24
  • 5KENNEDY J,EBERI-IART R C. Partide Flwarm Optimi- zation[ C ] //Conf. Neural Networks, Perth, 1995 : 1942 -1948. 被引量:1
  • 6LIAN Gin-ying, HUANG Kuo-lin, CHEN Jing-hong, et aL Training Algorithm for Radial Basis Function Neural Network Based on Quantum-Behaved Particle Swarm Op- timization [ J]. International Journal of Computer Math- ematics, 2010,87 ( 3 ) : 629 -641. 被引量:1
  • 7SHI Yu-hui,EBERHART R. A Modified Articles Warm Optimizer[ C ]//IEEE World Congress on Computational Intelligence, Honolulu, 1998:69 -73. 被引量:1
  • 8MOODY J, DARKEN C. Learning with the Localized Receptive Fields [ C 1 //Proceedings of the 1998 Con- nectionist Models Summer School, Hinton, Sejnowski, and Touretzsky, eds. Morgan Kaufinann, 1998: 133- 143. 被引量:1
  • 9黄成芳,何利民.敌我识别MK ⅫA浅析[J].电讯技术,2007,47(4):66-71. 被引量:26
  • 10陈伟..基于PSO的复杂工业环境视觉目标检测算法应用研究[D].武汉科技大学,2008:

二级参考文献9

共引文献52

同被引文献37

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部