期刊文献+

多级正向变异的遗传算法提高求解VRP问题效率

Multi-level forward mutation genetic algorithm to improve the efficiency for VRP
下载PDF
导出
摘要 应用遗传算法对车辆路径问题(VRP)求解时,由于遗传算法在解决VRP问题时,交叉操作难以保留优秀基因片段,可能导致算法收敛较慢等问题.在一定程度上影响了遗传算法解决VRP问题的实用性.在前人的基础上,通过一种多级正向变异方法,使变异最大程度向好的方向进行,拆除基因片段中较差的基因连接并建立新基因连接,从而得到较优的新基因片段,重复一定的变异次数,让变异达到最优效果.通过实验表明多级正向变异明显提高了遗传算法解决此类问题的效率. When using genetic algorithm to solve VRP problem, a slower convergence problem may be generated because the crossover operation could not keep good genes, which affects the usefulness of genetic algorithms to solve the VRP problem to a certain extent. On the basis of our predecessors, we have created a multi-level forward mutation method which dismantles poor gene fragment connection and creates a new connection to get a better gene. A large number of experiments show that forward mutation can greatly improve the genetic algorithm to solve such problems efficiently.
出处 《江西理工大学学报》 CAS 2014年第5期69-72,78,共5页 Journal of Jiangxi University of Science and Technology
关键词 车辆调度 遗传算法 多级正向变异 基因片段 算法设计 vehicle scheduling genetic algorithm multi-level forward mutation gene fragment algorithm design
  • 相关文献

参考文献13

二级参考文献45

共引文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部