期刊文献+

改进型K-Means算法在肠癌病理图像分割中的应用 被引量:11

Application of improved K-Means algorithm in image segmentation of intestine pathological image
下载PDF
导出
摘要 针对正常与癌变大肠病理切片图像的特征,结合主成分分析(PCA)和K-Means算法提出了一种分割大肠病理切片图像中腺腔和上皮细胞、细胞核、间质的算法,解决了传统K-Means算法确定初始中心的难点,提高了识别分类时的收敛速度.使用基于相关系数矩阵的主成分分析方法确定具有代表性的聚类初始中心,结合K-Means算法将大肠病理切片图像数据分成三类.相关实验证明:提出的改进型K-Means大肠病理切片图像分割算法能够准确地将大肠病理切片图像中的腺腔和上皮细胞、细胞核、间质分类,且使用PCA方法的算法收敛速度比传统使用RANDOM方法的算法更快,取得了良好效果. Targeting at the characteristics of normal and cancerous large intestine pathological section,and combining PCA (principal component analysis) and K-Means algorithm,an algorithm for segmenting the lumen,epithelial cell and cell nucleus in large intestine pathological section was proposed.This method can solve the difficulties in determining the initial center in traditional K-Means algorithm and improve the rate of convergence in identification and classification.The representative clustering initial center was determined throuth PCA based on correlation coefficient matrix.By combining the K-Means algorithm,the image data was divided into three classes.The experiments show that the improved K-Means algorithm for image segmentation of large intestine pathological section can classify the lumen,epithelial cell and cell nucleus in large intestine pathological section accurately,and rate of convergence of this algorithm is faster than traditional algorithm with RANDOM method.This method has good result.
出处 《浙江工业大学学报》 CAS 2014年第5期581-585,共5页 Journal of Zhejiang University of Technology
关键词 图像分割 大肠病理切片 K-MEANS算法 主成分分析 image segmentation large intestine pathological section K-Means PCA
  • 相关文献

参考文献10

  • 1SIEGEL R,NAISHADHAM D,JEMAL A.Cancer statistics[J].A Cancer Journal for Clinicians,2013,63(1):11-30. 被引量:1
  • 2SADANANDAM A,LYSSIOTIS C A,HOMICSKO K,et al.A colorectal cancer classification system that associates cellular phenotype and responses to therapy[J].Nature Medicine,2013,19(5):619-625. 被引量:1
  • 3CHANG K H,MILLER N,KHEIRELSEID E A H,et al.MicroRNA signature analysis in colorectal cancer:identification of expression profiles in stage Ⅱ tumors associated with aggressive disease[J].International Journal of Colorectal Disease,2011,26(11):1415-1422. 被引量:1
  • 4SUN S,BAUER C,BEICHEL R.Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach[J].Medical Imaging,IEEE TransActions on,2012,31 (2):449-460. 被引量:1
  • 5凌华强,龙胜春,项鹏远.主动形体模型法在肝脏CT图像分割中的应用[J].浙江工业大学学报,2012,40(4):450-453. 被引量:7
  • 6ALRABEA A,SENTHILKUMAR A V,AL-SHALABI H,et al.Enhancing k-means algorithm with initial cluster centers derived from data partitioning along the data axis with PCA[J].Journal of Advances in Computer Networks,2013,1(2):137-142. 被引量:1
  • 7古辉,王益义.一种基于模板匹配的船铭牌字符分割方法[J].浙江工业大学学报,2010(1):33-35. 被引量:7
  • 8朱永忠,姚烨,张艳.基于主成分分析和Logistic回归的上市公司财务困境预警模型的研究[J].浙江工业大学学报,2012,40(6):692-694. 被引量:7
  • 9CAMPBELL M C,MARKHAM J,FLORES H,et al.Principal component analysis of PiB distribution in parkinson and alzheimer diseases[J].Neurology,2013,81 (6):520-527. 被引量:1
  • 10NUMPACHAROEN K,ATSAWARUNGRUANGKIT A.Generating correlation matrices based on the boundaries of their coefficients[J].PloS One,2012,7 (11):e48902. 被引量:1

二级参考文献27

共引文献18

同被引文献104

引证文献11

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部