期刊文献+

一种基于(p^+,α)-敏感k-匿名的增强隐私保护模型 被引量:5

New based on(p^+,α)-sensitive k-anonymity enhanced privacy protection model
下载PDF
导出
摘要 将发布的数据用于微观数据表包含的敏感属性分析,同时保持个人隐私,是一个越来越重要的问题。当前,k-匿名模型用于保护隐私数据公布,然而当以身份公开为重点时,k-匿名模型在某种程度上并不能保护属性公开。基于此,提出了一种新的基于(p+,α)-敏感k-匿名隐私保护模型,敏感属性首先通过其敏感性进行分类,然后发布敏感属性归属的类别。与以往增强k-匿名模型不同,该模型允许发布更多的信息,但不会影响隐私。实验结果表明,新提出的模型可以显著降低违反保密性。 Publishing data for analysis from a microdata table containing sensitive attributes,while maintaining individual pri-vacy,is a problem of increasing significance.Now,the k-anonymity model was proposed for privacy preserving data publica-tion.While focusing on identity disclosure,k-anonymity model fails to protect attribute disclosure to some extent.This paper proposed a new privacy protection model called (p+,α)-sensitive k-anonymity,where sensitive attributes were first parti-tioned into categories by their sensitivity,and then published the categories that sensitive attributes belong to.Different from previous enhanced k-anonymity models,this model allowed us to release a lot more information without compromising privacy. Experimental results show that this introduced model can significantly reduce the privacy breach.
出处 《计算机应用研究》 CSCD 北大核心 2014年第11期3465-3468,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61371113) 江苏省高校自然科学研究资助项目(14KJB520026)
关键词 K-匿名模型 隐私保护 微观数据表 k-anonymity model privacy protection microdata table
  • 相关文献

参考文献16

  • 1SWEENEYL.kanonymity:amodelforprotectingprivacy[J].InternationalJournalon UncertaintyFuzzinessKnowledgebasedSystems,2002,10(5):557-570. 被引量:1
  • 2SAMARATIP.Protectingrespondents’identitiesinmicrodatarelease[J].IEEETransonKnowledgeandDataEngineering,2001,13(6):1010-1027. 被引量:1
  • 3SUNXiaoxun,LIMin,WANGHua,etal.Anefficienthashbasedalgorithmforminimalkanonymityproblem[C]//Procofthe31stAustralasianConferenceonComputerScience.Darlinghurst:AustralianComputerSociety,2008:101-107. 被引量:1
  • 4LEFEVREK,DEWITTD,RAMAKRISHNANR.Incognito:efficientfulldomainkanonymity[C]//ProcofACM SIGMOD InternationalConferenceonManagementofData.2005. 被引量:1
  • 5FUNGBC,WANGKe,YUPS.Topdownspecializationforinformationandprivacypreservation[C]//Procofthe21stInternationalConferenceonDataEngineering.WashingtonDC:IEEEComputerSociety,2005:205-216. 被引量:1
  • 6MEYERONA,WILLIAMSR.Onthecomplexityofoptimalkanonymity[C]//Procofthe23rdACMSIGMODSIGACTSIGARTSymposiumonthePrinciplesofDatabaseSystems.2004:223-228. 被引量:1
  • 7AGGARWALG,FEDERT,KENTHAPADIK,etal.Anonymizingtables[C]//Procofthe10thInternationalConferenceonDatabaseTheory.2005:246-258. 被引量:1
  • 8SUNXiaoxun,WANGHua,LIJiuyong.Onthecomplexityofrestrictedkanonymityproblem[C]//Procofthe10thAsiaPacificWebConferenceonProgressinWWW ResearchandDevelopment.Berlin:Springer,2008:287-296. 被引量:1
  • 9王茜,杨传栋,刘泓.基于模糊集的隐私保护方法研究[J].计算机应用研究,2013,30(2):518-520. 被引量:5
  • 10TRAIANTM,VINAYB.Privacyprotection:psensitivekanonymityproperty[C]//Procofthe22ndIEEEInternationalConferenceonDataEngineeringWorkshops.2006:94. 被引量:1

二级参考文献23

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Gruteser M, Grunwald D. Anonymous usage of location-based services through spatial and temporal cloaking//Pro-ceedings of the International Conference on Mobile Systems.Applications, and Services (MobiSys,03). San Fransisco,USA, 2003; 31-42. 被引量:1
  • 3Pan X, Xu J,Meng X. Protecting location privacy againstlocation-dependent attacks in mobile services. IEEE Transac-tions on Knowledge and Data Engineering, 2012, 24 (8):1506-1519. 被引量:1
  • 4Mokbel M F, Chow C Y,Aref W G. The newcasper:Queryprocessing for location services without compromising privacy//Proceedings of the 32nd Conference of Very Large Databases(VLDB 2006). Seoul, 2006:763-774. 被引量:1
  • 5Bamba B,Liu L. Supporting anonymous location queries inmobile environments with privacy grid//Proceedings of the17th International Conference on World Wide Web (WWW2008). Beijing, 2008; 237-246. 被引量:1
  • 6Krumm J. A survey of computational location privacy.Personal and Ubiquitous Computing, 2009,13(6):391-399. 被引量:1
  • 7Huo Z, Meng X, Hu H,Huang Y. You can walk alone:Trajectory privacy-preserving through significant stays pro-tection//Proceedings of the 17th International Conference onDatabase Systems for Advanced Applications (DASFAA,12).Busan, Korea,2012:351-366. 被引量:1
  • 8You T H, Peng W C,Lee W C. Protecting moving trajecto-ries with dummies//Proceedings of the 8th InternationalConference on Mobile Data Management (MDM,07). Mann-heim, Germany, 2007 ; 278-282. 被引量:1
  • 9Terrovitis M, Mamoulis N. Privacy preserving in the publi-cation of trajectories//Proceedings of the 9th InternationalConference on Mobile Data Management (MDM,08). Bei-jing, China, 2008:65-72. 被引量:1
  • 10Gruteser M, Liu X. Protecting privacy in continuous locationtracking applications. IEEE Security and Privacy, 2004,2(2):28-34. 被引量:1

共引文献71

同被引文献47

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部