摘要
Dear Editor, The pathways of ethylene biosynthesis and signaling have been studied in detail (Ji and Guo, 2013). Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), interacting with ETR1, and its homologs tomato GREEN RIPE (SlGR) and SlGRL1, and rice OsRTH1 negatively regulate the ethylene signaling (Barry and Giovannoni, 2006, Resnick et al., 2006; Dong et al., 2010; Zhang et al., 2012). A newly published study suggested that a cytochrome b5 and RTE1 are functional partners in promoting ETRl-mediated repression of ethylene signaling in Arabidopsis (Chang et al., 2014). However, AtRTH, RTE1 homolog in Arabidopsis, and its closest homolog in the tomato, SlGRL2 (GR-like2), do not play a role in ethylene signaling (Dong et al., 2010), and the function of the homologs of these members is not well known.
Dear Editor, The pathways of ethylene biosynthesis and signaling have been studied in detail (Ji and Guo, 2013). Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), interacting with ETR1, and its homologs tomato GREEN RIPE (SlGR) and SlGRL1, and rice OsRTH1 negatively regulate the ethylene signaling (Barry and Giovannoni, 2006, Resnick et al., 2006; Dong et al., 2010; Zhang et al., 2012). A newly published study suggested that a cytochrome b5 and RTE1 are functional partners in promoting ETRl-mediated repression of ethylene signaling in Arabidopsis (Chang et al., 2014). However, AtRTH, RTE1 homolog in Arabidopsis, and its closest homolog in the tomato, SlGRL2 (GR-like2), do not play a role in ethylene signaling (Dong et al., 2010), and the function of the homologs of these members is not well known.