期刊文献+

一种适用于云图书馆系统架构的自适应洗牌方法

An Adaptive Shuffling for Cloud Library System Architecture
下载PDF
导出
摘要 提出了一种自适应重采样方法,即自适应洗牌方法。它可以自适应的调整包的大小。该方法解决了当新包过大则只有少量的新包被加入到训练数据中且包越大向分类器提供的信息也就越少,结果对生成的分类器影响很小;若新包过小则容易生成错误的包而在训练集中加入噪声等问题。实验结果表明,本文方法可以显著提高分类器的准确度。 With the promotion of the cloud library, a high accuracy book recomendation system is essential to borrow more efficiently for reader. The adaptive resampling method (i. e. Adaptive Shuffling) is proposed to make the most use of known information and achieve a better accuracy. It can adaptively adjust the size of the bag. The experimental results show that the proposed method improves largely the accuracy of the classifier.
出处 《青岛大学学报(自然科学版)》 CAS 2014年第3期79-81,86,共4页 Journal of Qingdao University(Natural Science Edition)
关键词 多示例学习 重采样 自适应洗牌 multi-instance learning resampling adaptive shuffling
  • 相关文献

参考文献6

  • 1Dietterich T G,Lathrop R H,Lozano-P'erez T.Solving the multiple instance problem with axisparallel rectangles[J].Artificial Intelligence,1997,89(1-2):31-71. 被引量:1
  • 2温超,耿国华,李展.构建新包空间的多示例学习方法[J].西安交通大学学报,2011,45(8):62-66. 被引量:1
  • 3Auer P,Ortner R.A boosting approach to multiple instance learning[C] // In Machine Learning:ECML 2004,volume 3201 of Lecture Notes in Computer Science.Springer,2004.63-74. 被引量:1
  • 4Gary Doran,Soumya Ray,SMILe.Shuffled Multiple-Instance Learning[C] // Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,2013. 被引量:1
  • 5Blockeel H,Page D,Srinivasan A.Multi-instance tree learning[C] // In Proceedings of the 22nd International Conference on Machine Learning,2005.57-64. 被引量:1
  • 6Zhou Z,Sun Y,Li Y.Multi-instance learning by treating instances as non-IID samples[C] // In Proceedings of the 26th International Conference on Machine Learning,2009.1249-1256. 被引量:1

二级参考文献17

  • 1詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 2DIETTERICH T G, LATHROP R H, LOZANO- PEREZ T. Solving the multiple instance problem with axis-parallel rectangles [J].Artificial Intelligence, 1997, 89(1/2) : 31-71. 被引量:1
  • 3MARON O, LOZANO-PEREZ T. Advances in neural information processing systems 10: a framework for multiple-instance learning [M]. Cambridge, MA, USA: MIT Press, 1998:570-576. 被引量:1
  • 4ZHANG Qi, GOLDMAN S A. Advances in neural Informarion processing systems 14: EM-DD: an improved multiple-instance learning technique [M]. Cambridge, MA, USA: MIT Press, 2002: 107:3-1080. 被引量:1
  • 5ANDREWS S, HOFMANN T, TSOCHANTARIDIS I. Multiple instance learning with generalized support vector machines [C]//Proceedings of the 18th National Conference on Artificial Intelligence. Edmonton, Canada: AAAI Press, 2002: 943-944. 被引量:1
  • 6GARTNER T, FLACH P A, KOWALCZYK A, et al. Multi-instance kernels [C] // Proceedings of the 19th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Katffrnam Publishers Inc, 2002. 179-186. 被引量:1
  • 7WANG Huayan, YANG Qiang, ZHA Hongbin. Adaptive p-posterior mixture-model kernels for multiple instance learning [C]//Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM Press, 2008: 1136-1143. 被引量:1
  • 8ZHOU Zhihua, SUN Yuyin, LI Yufeng. Multi-instance learning by treating instances as non I. I. D. samples [C] // Proceedings of the 26th International Conference on Machine Learning. Quebec, Canada:[n. s.], 2009:1249-1256. 被引量:1
  • 9ZHOU Zhihua, ZHANG Minling. Neural networks for multi-instance learningEC]//Proceedings of the International Conference on Intelligent Information Technology. Beijing, China's People's Post and Telecommunications Publishing House, 2002: 455-459. 被引量:1
  • 10ZHANG Minling, ZHOU Zhihua. Adapting RBF neural networks to multi-instance learning [J]. Neural Processing Letters, 2006, 23 (1) : 1-26. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部