期刊文献+

GLOBAL ASYMPTOTICAL STABILITY OF AN OBLIGATE LOTKA-VOLTERRA MUTUALISM MODEL 被引量:2

GLOBAL ASYMPTOTICAL STABILITY OF AN OBLIGATE LOTKA-VOLTERRA MUTUALISM MODEL
原文传递
导出
摘要 By constructing a suitable Lyapunov function,sufficient conditions which ensure the global asymptotical stability of the positive equilibrium and boundary equilibrium of an obligate Lotka-Volterra mutualism model are obtained,respectively.It is shown that the conditions which ensure the local stability of the nonnegative equilibria is enough to ensure their global asymptotical stability.Our result supplements and complements some known result. By constructing a suitable Lyapunov function,sufficient conditions which ensure the global asymptotical stability of the positive equilibrium and boundary equilibrium of an obligate Lotka-Volterra mutualism model are obtained,respectively.It is shown that the conditions which ensure the local stability of the nonnegative equilibria is enough to ensure their global asymptotical stability.Our result supplements and complements some known result.
出处 《Annals of Differential Equations》 2014年第3期267-271,共5页 微分方程年刊(英文版)
基金 supported by the Natural Science Foundation of Pujian Province(2013J01011,2013J01010) the Foundation of Fujian Edication Bureau(JA13361)
关键词 mutualism model obligate global asymptotical stability mutualism model obligate global asymptotical stability
  • 相关文献

参考文献13

  • 1Q.Y. Jiang, J.X. Xie, J. Ye, Mathematical Modelling, Fourth edition, High Education Press, Beijing, 2011. 被引量:1
  • 2F.D. Chen, M.S. You, Permanence for an integrodifferential model of mutualism, Appl. Math. Comput., 186:1(2007),30-34. 被引量:1
  • 3L.J. Chen, X.D. Xie, Feedback control variables have no influence on the permanence of a discrete N-species cooperation system, Discrete Dynamics in Nature and Society, Volume 2009, Article ID 306425, 10 pages. 被引量:1
  • 4F.D. Chen, Permanence for the discrete mutualism model with time delays, Math. Comput. Modelling, 47(2008),431-435. 被引量:1
  • 5F.D. Chen, J.H. Yang, L.J. Chen, X.D. Xie, On a mutualism model with feedback controls, Appl. Math. Comput., 214(2009),581-587. 被引量:1
  • 6L.J. Chen, L.J. Chen, Z. Li, Permanence of a delayed discrete mutualism model with feedback controls, Math. Comput. Modelling, 50(2009),1083-1089. 被引量:1
  • 7L.J. Chen, X.D. Xie, Permanence of an n-species cooperation system with continuous time delays and feedback controls, Nonlinear Anal.: Real World Appl., 12(2001),34-38. 被引量:1
  • 8Y.K. Li, T. Zhang, Permanence of a discrete N-species cooperation system with time-varying delays and feedback controls, Math. Comput. Modelling, 53(2011),1320-1330. 被引量:1
  • 9J.K. Hale, Ordinary Differential Equations, Wiley, New York, 1969. 被引量:1
  • 10K. Gopalsamy, X.Z. He, Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215(1997),154-173. 被引量:1

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部