期刊文献+

不同数字线下儿童与成人分数估计的表征模式 被引量:5

Representation Patterns of Children's and Adults' Fraction Estimation on Different Number Lines
原文传递
导出
摘要 以44名小学六年级儿童与40名大学生为被试,通过0-1和1/100-1/10两种数字线的NP(数字位置)和PN(位置数字)估计任务系统考察儿童与成人的分数估计的表征方式。结果显示:(1)儿童和成人在0-1数字线的NP和PN任务上都呈线性表征,但在1/100-1/10数字线下,两组被试在NP任务上却呈对数表征,在PN任务上呈指数表征;(2)NP任务的错误百分比均高于PN任务,且儿童在两数字线下的准确性均明显低于成人。 44 sixth-graders and 40 college students were tested by Number-Position task (NP) and Position-Number task (PN) on 0- 1 and 1/100 -1/10 number lines to explore children's and adults' representation patterns of fractions estimation. Results showed that : 1 ) Two groups followed a linear pattern in both NP and PN tasks on 0 - 1 number line, and followed a logarithmic pattern on NP task and an exponential pattern on PN task on 1/100 - 1/10 number line. ; 2) the percentage of error for NP task was higher than PN task for children and adults, and sixthgraders made more error than the adults did on the 0 - 1 and 1/100 - 1/10 number lines.
出处 《心理发展与教育》 CSSCI 北大核心 2014年第5期449-456,共8页 Psychological Development and Education
基金 山东省自然科学基金面上项目(ZR2010CM059) 国家自然科学基金面上项目(31371048) 山东省强化建设重点学科"发展与教育心理学"专项经费资助
关键词 数字线估计 线性表征 分数估计 NP任务 PN任务 number line estimation linear representation fractions estimation NP task PN task
  • 相关文献

参考文献24

  • 1Booth, J. L" , & Siegler, R. S. (2006), Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41(6): 189-201. 被引量:1
  • 2Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press. 被引量:1
  • 3Gibbon, J., & Church, R. M. (1981). Time left: Linear versus logarithmic subjective time. Journal of the Experimental Analysis of Behavior, 7(2) , 87 - 107. 被引量:1
  • 4Mix, K. S. , Huttenlocher, J. , & Levine, S. C. (200). Quantitative development in infancy and early childhood. New York: Oxford University Press. 被引量:1
  • 5Ischebeck, A. , Schocke, M. , & Delazer, M. (2009), The processing and representation of fractions within the brain : An fMRI investigation. Neurolmae. 47( 1 . 403 -413. 被引量:1
  • 6Kallai, A. Y., & Tzelgov, J. (2009), A generalized fraction: An entity smaller than one on the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35 (6) , 1845 - 1864. 被引量:1
  • 7Nieder, D. , & Deheane, S. (2009), Representation of number in the brain. Annual Review of Neuroscience, 32 ( 1 ) , 185 - 208. 被引量:1
  • 8Opfer, J. E. , & Devries, J. M. (2008), Representational change and magnitude estimation: Why young children can make more accurate salary comparisons than adults. Cognition, 108(3): 843 - 849. 被引量:1
  • 9Schneider, M., & Siegler, R. S. (2010), Representations of themagnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5) , 1227 - 1238. 被引量:1
  • 10Siegler, R. S. , & Booth, J. L. (2004), Development of numerical estimation in young children. Child Development, 75 (2) , 428 -444. 被引量:1

二级参考文献102

  • 1倪玉菁.五、六年级小学生对分数的意义和性质的理解[J].心理发展与教育,1999,15(4):26-30. 被引量:18
  • 2张红川,董奇,周新林.数字加工的脑功能成像研究进展及其皮层定位[J].心理科学,2005,28(1):56-60. 被引量:6
  • 3张真,苏彦捷.人类数能力的演化基础——数能力比较研究的启示[J].心理科学进展,2007,15(1):57-63. 被引量:14
  • 4Amato, S. A. (2005). Developing students' understanding of the concept of fractions as numbers. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 49 56). Melbourne: University of Melbourne. 被引量:1
  • 5Ball, D., & Wilson, S. M. (1996). Integrity in teaching: Recognizing the fusion of the moral and intellectual. American Educational Research Journal, 33, 155-192. 被引量:1
  • 6Bonato, M., Fabbri, S., Umilth, C., & Zorzi, M. (2007). The mental representation of numerical fracions: Real or integer? Journal of Experimental Psychology, 33, 1410-1419. 被引量:1
  • 7Brannon, E. M., Abbott, S., & Lutz, D. J., (2004). Number bias for the discrimination of large visual sets in infancy. Cognition, 93, B59 -B68. 被引量:1
  • 8Brannon, E. M., Lutz, D., & Cordes, S., (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9, F59- F64. 被引量:1
  • 9Bulgar, S. (2003). Children's sense-making of division of fractions. Journal of Mathematical Behavior, 22, 319- 334. 被引量:1
  • 10Charalambos, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students' understandings of fractions. Educational Studies in Mathematics, 64, 293-316. 被引量:1

共引文献46

同被引文献56

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部