期刊文献+

数据挖掘模型在小企业主信用评分领域的应用 被引量:23

Application of Data Mining Models in Credit Scoring for Small Business Owners
下载PDF
导出
摘要 国际经验表明,信用评分技术可较好地解决小企业贷款高成本、高风险及信息不对称难题。本文广泛选取了可适用于小企业主信用评分领域的12种数据挖掘模型(包括本文的改进模型门限Logistic),并以3个银行微观客户数据集为案例,通过10折交叉验证和预期分类错误成本的方式,检验了这些模型的综合信用评分能力。分析结果及稳健性检验表明,本文改进的门限Logistic模型在模型预测能力及预期错误分类成本等多方面表现优秀;而基于决策树的组合方法也表现良好。本研究对国内商业银行建立合适的小企业主贷款信用评分模型具有参考意义,也有助于推动银行微观金融统计,完善金融统计工作。 As an international experience, credit scoring technology can effectively solve the problems of small business loans, such as high cost, high risk and asymmetric information. This paper selected 12 data mining models (including the threshold Logistic model which was improved by this paper)which may be suitable for the topic. Three banks' microscopic customer data sets (sample size was 30488,1000 and 700 respectively) were employed in the case study. This paper assessed the performance of the 12 credit scoring models by using 10 - fold cross validation and the expected misclassification costs methods. Analysis results and robustness tests showed that the improved threshold Logistic model outperforms other approaches while the combination methods based on decision trees also performs well. This paper is useful for the domestic commercial banks to establish appropriate credit scoring models for small business owners loan. The implementation of such models can be expected to promote the micro-finance data statistics, and then the macro-government finance statistics.
出处 《统计研究》 CSSCI 北大核心 2014年第10期89-98,共10页 Statistical Research
关键词 数据挖掘 门限Logistic 小企业主 信用评分 Data Mining Threshold Logistic Small Business Owners Credit Scoring
  • 相关文献

参考文献16

  • 1Desai, V. S. , Crook, J. N. , & Overstreet, G. A. Theory and Methodology--A comparison of neural networks and linear scoring modelsin the credit union environment [ J]. European Journal of Operational Research, 1996 ( 1 ) : 24 - 37. 被引量:1
  • 2Boyle M, Crook J, Hamilton R, et al. Methods for credit scoring applied to slow payers [ M ]. Oxford : Clarendon Press, 1992:78 - 89. 被引量:1
  • 3Frame, S. , A. Srinivasan and L. Woosley. The Effect of Credit Scoring on Small Business Lending[ J]. Journal of Money, Credit, and Banking,2001 (3) :813 - 825. 被引量:1
  • 4West, D. Neural network credit scoring models[ J]. Computers and Operations Research, 2000 ( 11 ) : 1131 - 1152. 被引量:1
  • 5Johnson, R. A. , & Wichern, D. W. Applied multivariate statistical analysis (5th ed. ) [ M ]. Upper Saddle River, NJ: Prentice-Hall, 2002. 被引量:1
  • 6Lee T S, Chiu C C, Chou Y C, et al. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines [ J ]. Computational Statistics & Data Analysis, 2006(4) : 1113 -1130. 被引量:1
  • 7Davis R H, Edelman D B, Gammerman A J. Machine-learning algorithms for credit-card applications [ M . Oxford : Oxford University Press, 1992 : 129 - 137. 被引量:1
  • 8Piramuthu S. Financial credit-risk evaluation with neural and neurofuzzy systems [J]. European Journal of Operational Research, 1999(2) : 310 -321. 被引量:1
  • 9Alien N. Berger & W. Scott Frame. Small business credit scoring and credit availability [ R]. Working Paper, 2005 - 10, Federal Reserve Bank of Atlanta, 2005. 被引量:1
  • 10向晖..个人信用评分组合模型研究与应用[D].湖南大学,2011:

二级参考文献12

  • 1Baesens B ; Van Gestel T ; Viaene S ; Stepanova M ;Suykens J ; Vanthienen J ( 2003 ) Benchmarking state- ofthe-art classification algorithms for credit scoring,The Journal of the Operational Research Society,54,627 ~ 635. 被引量:1
  • 2Desai,V S ,Crook,J N and Overstreet,G A (1996) A comparison of neural networks and linear scoring models in the credit environment.European Journal of Operational Research,95,24 ~ 37. 被引量:1
  • 3Desai,V S ,Convay,D G ,Crook,J N and Overstreet G A (1997) Credit scoring models in the credit union environment using neural networks and genetic algorithms.IMA Journal of Mathematics Applied in Business and Industry,8,323 ~ 346. 被引量:1
  • 4Rosenberg,E.and Gleit,A.(1994) Quantitative methods in credit management:a survey.Operations Research,42,589 ~ 613. 被引量:1
  • 5Thomas,L C ,Edelman D B and Jonathan N.Crook (2002),Credit Scoring and Its Application,SIAM monographs on mathematical modeling and Computation,Philadelphia. 被引量:1
  • 6Yobas,M.and Crook,J N ( 2000 ) Credit Scoring Using Neural and Evolutionary Techniques.IMA Statistics in Finance,Journal of Mathematics Applied in Business and Industry,11,111 ~ 125. 被引量:1
  • 7Baesens B.; Van Gestel T.; Viaene S.; Stepanova M.;Suykens J.; Vanthienen J ( 2003 ) Benchmarking state- ofthe-art classification algorithms for credit scoring,The Journal of the Operational Research Society,54,627 ~ 635. 被引量:1
  • 8Desai,V.S.,Crook,J.N.and Overstreet,G.A.(1996) A comparison of neural networks and linear scoring models in the credit environment.European Journal of Operational Research,95,24 - 37. 被引量:1
  • 9Desai,V.S.,Convay,D.G.,Crook,J.N.and Overstreet G.A.(1997) Credit scoring models in the credit union environment using neural networks and genetic algorithms.IMA Journal of Mathematics Applied in Business and Industry,8,323 ~ 346. 被引量:1
  • 10Rosenberg,E.and Gleit,A.(1994) Quantitative methods in credit management:a survey.Operations Research,42,589 - 613. 被引量:1

共引文献59

同被引文献357

引证文献23

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部