摘要
针对无线传感器网络流量预测误差较大的问题,基于模糊神经网络和小波变换提出了一种新的预测算法(State Prediction algorithm based on Fuzzy Neural Network,SPFNN).首先该算法利用α-稳定分布对实际流量进行刻画,并给出了满足该分布的判断依据;其次,通过结合模糊神经网络和小波变换来提高实际流量的预测精度;最后,结合OPNET和MATLAB进行联合仿真,深入研究了影响该算法的关键因素,并对比其它算法性能,结果发现SPFNN具有较好的适应性.
In order to overcome the lager prediction error of wireless sensor network, based on fuzzy neural network and wavelet transform, a novel prediction algorithm (State Prediction algorithm based on Fuzzy Neural Network,.SPFNN) is presented. At first, the algorithm uses α-stable distribution to depict the characteristic of actual traffic, and gives the distribution judgments. Then, the prediction accuracy of actual traffic is improved by neural network and wavelet transform. Finally, a simulation was conducted to study the key influence factor of algorithm with OPNET and MATLAB. The results show that, compared to other algorithm, SP-α has better suitability.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第5期921-926,共6页
Journal of Sichuan University(Natural Science Edition)
基金
重庆市教委科学技术研究项目(KJ133103)
江苏省自然科学基金项目(BK2011152)
中国科学院计算机科学国家重点实验室开放课题(CSYSKF0908)
关键词
预测
误差
α-稳定分布
模糊神经网络
小波
Error
Prediction
α-Stable Distribution
Fuzzy neural network
Wavelet