摘要
本文研究了一类非凸变分不等式组,利用投影技术,建立了一些求解这类非凸变分不等式组的新的迭代算法,并在仅要求算子的Lipschitz连续性,而不要求拟单调、单调、强制性的情况下证明了这些新的迭代算法的收敛性,证明方法也比相关文献简单.
In this paper, a new system of nonconvex variational inequalities is introduced and studied. Using the projection technique, we suggest and analyze some new iterative methods for solving the system of nonconvex variational inequalities. We show that the convergence of these new methods only requires Lipschitz continuous and does not requires the pseudomonotonicity, monotonicity or cocoercivity of the operators, which is a very weak condition. Our methods is very simple as compared with other methods.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第5期899-904,共6页
Journal of Sichuan University(Natural Science Edition)
基金
中央高校基本科研业务费专项资金资助(JBK130401)
关键词
非凸变分不等式组
投影技术
迭代算法Lipschitz连续
System of nonconvex variational inequalities
Projection technique
Iterative algorithm
Lip-schitz continuous