期刊文献+

模拟导弹制导的交通系统路径诱导算法 被引量:1

Traffic System Path Guidance Algorithm Based on Missile Guidance
下载PDF
导出
摘要 模拟导弹制导的单车诱导算法利于交通系统优化目标(车流量平衡目标).为避免多车诱导导致的交通拥堵,以模拟导弹制导的单车诱导算法为基础,提出了模拟导弹制导的交通系统路径诱导算法.按照出行需求,对模拟导弹制导的时间最短路径算法进行改进,使算法满足各类单车路径规划目标,以提高单车诱导接受率.系统路径诱导算法以交通系统优化为最终目标,对超出路网通行能力的诱导进行修正,使交通流运行趋势符合驾驶员出行需求.建立系统优化评价指标和系统诱导接受率指标,并以北京部分地区为例进行仿真.仿真结果表明,算法能够达到系统优化目标,同时保证了较高的系统诱导接受率. A simulated missile guidance algorithm is useful for single-vehicle path planning to achieve the system optimization objectives(vehicle flow balance objectives). To avoid traffic congestion caused by a planning algorithm in which multiple vehicles adopt the same path, a simulated missile guidance algorithm for traffic system path planning was proposed based on a simulated missile guidance algorithm for single-vehicle path planning. The least-time path algorithm based on missile guidance was improved in response to drivers' travel demands. The improved algorithm can be applied to all types of single-vehicle path planning objectives and can enhance the guidance acceptance rate. The ultimate goal of the system path guidance algorithm is to optimize the traffic system. To make the traffic flow tendency conform to drivers' travel demands,it modifies the guidance when the road network capacity is exceeded. A system optimization evaluation index and a guidance acceptance rate index were established. An area of Beijing was taken as an example, and the results show that the algorithm can achieve system optimization and ensure a high guidance acceptance rate.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2014年第4期180-185,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(50908101)
关键词 交通工程 系统诱导算法 模拟导弹制导 出行需求 系统优化 traffic engineering system guidance algorithm simulated missile guidance travel demand system optimization
  • 相关文献

参考文献5

二级参考文献51

  • 1姚丽亚,关宏志,魏连雨,孙立山.基于实时交通信息的行程时间估算及路径选择分析[J].公路交通科技,2006,23(11):86-89. 被引量:7
  • 2陈昕,杨兆升,王海洋,刘新杰,王彦新.城市交通控制与诱导系统协同研究[J].公路交通科技,2007,24(4):121-125. 被引量:7
  • 3Adler J L, Blue V J. A cooperative Multi-Agent transportation management and route guidance system [J]. Transportation Research Part C (S0968-090X), 2002, 10(5-6): 433-454. 被引量:1
  • 4Dia H. An Agent-based approach to modeling driver route choice behavior under the influence of real-time information [J]. Transportation Research Part C (S0968-090X), 2002, 10(5-6): 331-349. 被引量:1
  • 5Adler J L, Satapathy G, Manikonda V, et al. A Multi-Agent approach to cooperative traffic management and route guidance [J]. Transportation Research Part B (S0191-2615). 2003, 39 (4): 297-318. 被引量:1
  • 6Wahle J, Bazzan C, Klugl F, et al. The Impact of Real-time Information in a Two-route Scenario Using Agent-based Simulation [J]. Transportation Research Part C (S0968-090X), 2002, 10(5-6): 399-417. 被引量:1
  • 7钱颂迪 甘应爱 田丰.运筹学[M].北京:清华大学出版社,2002.. 被引量:24
  • 8Qin X L. Real-time control and optimization of traffic signal timing transition for emergency vehiclepreemption[ D]. Carleton University, 2005. 被引量:1
  • 9Chou C H, Teng J C. A fuzzy logic controller for traffic junction signals [ J ]. Information Sciences, 2006 ( 143 ) :73-97. 被引量:1
  • 10Bingham E. Reinforcement learning in neurofuzzy traffic control[ J ]. European Journal of Operational Research, 2001,131(2) : 232-241. 被引量:1

共引文献24

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部