期刊文献+

一种对Gamma分布的SAR图像相干斑去噪方法 被引量:2

A Denoising Method Aiming at the Speckle of Gamma Distribution SAR Image
下载PDF
导出
摘要 鉴于Gamma分布的SAR图像相干斑经对数变换后可近似为高斯分布,提出一种基于粒子群优化的BP神经网络复原去噪算法。首先用高斯噪声对无噪图像进行模糊处理,然后将结果和原图像组成训练对,用于训练优化后的神经网络,最后利用训练好的神经网络对SAR图像进行复原,从而达到去除相干斑的目的。实验表明,该算法能有效解决传统去噪算法在图像失真、边缘模糊方面的问题,收敛速度快,迭代次数少,归一化均方误差(NMSE)和峰值噪比(PSNR)效果更好。 After processing by logarithmic transformation,the Gamma distribution speckle of SAR images are analogous to Gasussian distribution.In view of this,a BP neural network restoration denoising method based on particle swarm optimi-zation is proposed.Firstly,noiseless images are process by Gasussian noise.then,the result image and the noiseless images are made training pair,which is used in training the optimizational BP neural network.Lastly,using the BP neural network to restore SAR Images for the purpose of removing speckle.The experiment shows,compared with traditional denoising algo-rithm,the method can effectively solve the problem of image distortion and edge burring,have fast convergence rate and less iterations,is better in normalized mean square error (NMSE)and peak signal-to-noise ratio (PSNR).
出处 《计算技术与自动化》 2014年第3期92-96,共5页 Computing Technology and Automation
基金 国防十二五预研基金项目(40405070102)
关键词 BP神经网络 粒子群优化 合成孔径雷达图像 去噪 BP neural network particle swarm optimization SAR image denoising
  • 相关文献

参考文献8

二级参考文献52

共引文献97

同被引文献21

  • 1Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans Pattern Analysis and Ma- chine Intelligence, 1980,2(2) : 165-168. 被引量:1
  • 2Kuan D T, Sawehuck A A, Strand T C. Adaptive noise smoothing filter for image with signal dependent noise[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1985,7(2) :165-177. 被引量:1
  • 3Rudin L, Lions P, Osher S. Multiplieative denoising and deblurring: Theory and algorithms[C]// Geometric Level Sets in Imaging Vision and Graphics. Berlin:Springer, 2003 : 103-120. 被引量:1
  • 4Aubert G, Aujol J. A variational approach to removing multiplicative noise[J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946. 被引量:1
  • 5Huang Lili, Xiao Liang, Wei Zhihui. Muhiplicative noise removal via a novel variational model[J]. EURASIP Journal on Image and Video Processing, 2010, 10(25):768-784. 被引量:1
  • 6Durand S, Fadili J, Nikolova M. Muhiplicative noise removal using L1 fidelity on fram coefficients [J]. Journal of Mathemati- cal Imaging and Vision,2010,36(3) :201-226. 被引量:1
  • 7Lysaker M, Lundervold A,Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12 (12) : 1579-1590. 被引量:1
  • 8Shi B, Huang L. A model based on the fourth-order PDE for multiplication noise removal[J]. Journal of Hunan University (Natural Science), 2011, 38(7) :83-86. 被引量:1
  • 9Mumford D. Elastica and computer vision: Algebraic geometry and its application[M]. New York:Springer-Verlag, 1994: 491-506. 被引量:1
  • 10Brito L C,Chen K. Fast numerical algorithms for euler's elastiea inpainting model[J]. International Journal of Modern Math- ematics, 2010, 5(5): 157-158. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部