期刊文献+

基于连续域混合蚁群优化的核模糊C-均值聚类算法研究 被引量:5

Kernelized Fuzzy C-Means Clustering Algorithm Based on Hybrid Ant Colony Optimization for Continuous Domains
下载PDF
导出
摘要 为进一步提高核模糊C-均值聚类算法的聚类性能,提出基于连续域混合蚁群优化的核模糊C-均值聚类算法(KFCM-HACO),使用HACO对KFCM算法的内核函数参数值和聚类中心进行优化,克服传统算法弊端,使核模糊C-均值聚类算法的目标函数最小化,加快算法的收敛速度.该优化算法在UCI数据集上的仿真实验及结果比较表明,KFCM-HACO算法的聚类性能优于传统的聚类算法,提高了聚类的准确性. To further improve the clustering performance of kernelized fuzzy C-means clustering algorithm,a kernelized fuzzy C-means clustering algorithm based on hybrid ant colony optimization of continuous domain(KFCM-HACO) is proposed. Kernel function parameters value of KFCM algorithm is optimized by HACO,which overcomes the shortcomings of traditional algorithm,minimizes the objective function of kernelized fuzzy clustering algorithm, and speeds up the convergence rate of the algorithm. The simulation and comparison results on UCI dataset show that the KFCM-HACO algorithm outperforms the traditional clustering algorithm and improves the accuracy of clustering.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期841-846,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.51008143) 江苏省高校自然科学研究项目(No.10JKB520006)资助
关键词 聚类分析 核模糊C-均值聚类 混合蚁群优化 连续概率密度函数 Clustering Analysis Kernelized Fuzzy C-Means Clustering Hybrid Ant Colony Optimization Continuous Probability Density Function
  • 相关文献

参考文献15

  • 1Jain A K. Data Clustering: 50 Years Beyond K-means. Pattern Rec- ognition Letters, 2010, 31 (8) : 651-666. 被引量:1
  • 2Ozbay Y, Ceylan R, Karlik B. Integration of Type-2 Fuzzy Cluste- ring and Wavelet Transform in a Neural Network Based ECG Classi- fier. Expert Systems with Applications, 2011, 38(1) : 1004-1010. 被引量:1
  • 3Zhang D Q, Chen S C. A Novel Kernelized Fuzzy C-means Algo- rithm with Application in Medical Image Segmentation. Artificial Intelligence in Medicine, 2004, 32(1): 37-50. 被引量:1
  • 4Niu" Q, Huang X J. An Improved Fuzzy C-means Clustering Algo- rithm Based on PSO. Journal of Software, 2011, 6(5) : 873-879. 被引量:1
  • 5Teh Y W, Jordan M I, Beal M J, et al. Hierarchical Dirichlet Processes. Journal of the American Statistical Association, 2006t 101(9) : 1566-1581. 被引量:1
  • 6Huang H, Abdel-Aty M. Multilevel Data and Bayesian Analysis in Traffic Safety. Accident Analysis & Prevention, 2010, 42 (6): 1556-1565. 被引量:1
  • 7Ma J W, Fu S Q. On the Correct Convergence of the EM Algorithm for Ganssian Mixtures. Pattern Recognition, 2005, 38(12) : 2602- 2611. 被引量:1
  • 8Caillol H, Pieczynski W, Hillion A. Estimatidn of Fuzzy Gaussian Mixture and Unsupervised Statistical Image Segmentation. IEEE Trans on Image Processing, 1997, 6(3) : 425-440. 被引量:1
  • 9Du J, Hu Y, Jiang H. Boosted Mixture Learning of Gaussian Mix- ture Hidden Markov Models Based on Maximum Likelihood for Speech Recognition. IEEE Trans on Audio, Speech, and Language Processing, 2011, 19(7) : 2091-2100. 被引量:1
  • 10马江洪,葛咏.图像线状模式的有限混合模型及其EM算法[J].计算机学报,2007,30(2):288-296. 被引量:12

二级参考文献7

  • 1McLachlan G J,Basford K E.Mixture Models:Inference and Applications to Clustering.New York:Marcel Dekker,1988 被引量:1
  • 2Sclove S C.Application of the conditional population mixture model to image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1983,PAMI-5:428-433 被引量:1
  • 3Zhuang X et al.Gaussian mixture density modeling,decomposition,and applications.IEEE Transactions on Image Processing,1996,5(9):1293-1302 被引量:1
  • 4McLachlan G J,Krishnan T.The EM Algorithm and Extensions.John Wiley,1997 被引量:1
  • 5Leung Y,Ma J H,Zhang W X.A new method for mining regression classes in large data sets.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(1):5-21 被引量:1
  • 6Amari S.Information geometry of the EM and em algorithms for neural networks.Neural Networks,1995,8(9):1379-1408 被引量:1
  • 7马江洪,张文修,梁怡.挖掘回归类的混合模型的可识别性[J].计算机学报,2003,26(12):1652-1659. 被引量:2

共引文献11

同被引文献44

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1069
  • 2Kaufman L,Rousseeuw P.Finding Groups in Data[M].Wiley Series in Probability and Statistic,2005:56-67. 被引量:1
  • 3Mirkin B.Clustering for Data Mining:A Data Recovery Approach[M].Chapman and Hall,2005:12-24. 被引量:1
  • 4Wang Xiang,Guo Rui,et al.A Novel Alternative WeightedFuzzy C-means Algorithm and Cluster Validity Analysis [C]∥IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.2008:130-134. 被引量:1
  • 5Hammerly G,Elkan C.Alternatives to the k-mean algorithm that find better clusterings[C]∥Proceedings of the 11th InternationalConference on Information and Knowledge Management,2002:600-607. 被引量:1
  • 6Liu X,Yang C.Performance research of Gaussian functionweighted fuzzy C-means algorithm[C]∥Proceedings of SPIE.2007. 被引量:1
  • 7Yang M S,Tsai H S.A Gaussian kernel-based fuzzy c-means algotihm with a spatial bias correction[J].Pattern Recognition Letters,2008,29(12):1713-1725. 被引量:1
  • 8Ramathilagam S,Huang Yueh-min.Extended Gaussian kernelversion of fuzzy c-means in the problem of data analyzing[J].Expert Systems with Applications:An International Journal,2011,38(4):3793-3805. 被引量:1
  • 9冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报,2008,37(1):105-111. 被引量:87
  • 10文贵华.面向机器学习的相对变换[J].计算机研究与发展,2008,45(4):612-618. 被引量:10

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部