摘要
The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.
The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.
基金
Supported by National Natural Science Foundation of China(Grant No51005205)
Science Fund for Creative Research Groups of Nationa Natural Science Foundation of China(Grant No.51221004)
Nationa Basic Research Program of China(973 Program,Grant No.2013CB035405)
Open Foundation of State Key Laboratory of Automotive Safety and Energy,Tsinghua University,China(Grant No.KF13011)