期刊文献+

基于改进粒子群算法的复杂地况下雷达布站优化 被引量:9

Study of Radar Deployment Under Complex Terrain Environment Based on Improved PSO
下载PDF
导出
摘要 针对现有雷达布站数学模型不能解决复杂地况下的雷达布站问题,提出了一种复杂地况下的雷达布站数学模型,该模型解决了雷达在复杂地况下布站位置受限的问题。在此基础上,提出了基于改进粒子群算法的复杂地况下的雷达布站优化算法,该算法改善了现有粒子群算法中期搜索性能不强的缺陷。仿真结果验证了提出的改进雷达布站数学模型的可行性和基于改进粒子群算法的复杂地况下雷达布站优化方法的有效性。 An improved mathematical model of radar optimal deployment is proposed,because the results of using the existing mathematical models optimize radar deployment under complex terrain environment cannot obtain good results. This new mathematical model eliminated the restrictions of radar deployment under complex terrain environment. On this basis,a new optimal algorithm of radar deployment under complex terrain environment is proposed based on particle swarm optimization (PSO)algorithm. The new optimal algorithm improved the existing PSO’s performance deficiency for the weak search in the interim of iteration. Simulation results show the feasibility of the improved radar optimal deployment mathematical model,and the effectiveness of the radar deployment method based on improved PSO algorithm under complex terrain environment.
机构地区 沈阳理工大学
出处 《火力与指挥控制》 CSCD 北大核心 2014年第9期164-168,共5页 Fire Control & Command Control
关键词 复杂地况 雷达布站 数学模型 粒子群算法 complex terrain environment radar deployment mathematical model PSO
  • 相关文献

参考文献12

  • 1Hurley S, Khan M I.Netted Radar: Network Commumications Design and Optimization [ J ].Ad Hoc Networks, 2011,9 (5) : 736-751. 被引量:1
  • 2Derham T E, Doughty S, Woodbridge K, et al.Design and E- valuation of A Low-cost Muhistatic Netted Radar System [ J ]. Radar,Sonar&Navigation, 2007,5( 1 ): 362-368. 被引量:1
  • 3吕月,张冰.雷达组网系统责任区抗干扰优化部署[J].火力与指挥控制,2011,36(8):83-86. 被引量:10
  • 4Deng H. Orthogonal Netted Radar Systems [ J ].Aerospace and Electronic Systems Magazine, 2012,27(5 ) : 28-35. 被引量:1
  • 5王中杰,李侠,周启明,万凡兵.多约束条件的雷达组网系统部署决策问题[J].火力与指挥控制,2008,33(12):133-136. 被引量:11
  • 6Kusiak A,Wei X, Verma A P, Modeling and Prediction of Rainfall Using Radar Refletivitu Data:A Data-Mining Ap- proach [ J ]. Roz E.Geosciene and Remote Sensing, 2013,51 (4) :2337-2342. 被引量:1
  • 7Wang Y, Li B, Wang J Y, et al.Self-adaptive Learning Based Particle Swarm Optimization [ J ].Information Sciences, 2011,181(20),4515-4538. 被引量:1
  • 8Chen X, Li Y M.A Modified PSO Structure Resulting in High Exploration Ability With Convergence Guaranteed.Systems [ J ], Man,and Cybernetics,Part B : Cybernetics,2007,37 (5) : 1271-1289. 被引量:1
  • 9Hooshmand R A, Sohani S. Fuzzy Optimal Phase Balancing of Radial and Meshed Distribution Networks Using BF-PSO Al- gorithm [ J ].Power Systems, 2012,27( 1 ) : 47-57. 被引量:1
  • 10阙渭焰,彭应宁,侯秀英.雷达布站方法[J].清华大学学报(自然科学版),1997,37(4):45-48. 被引量:22

二级参考文献26

共引文献106

同被引文献86

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部