期刊文献+

基于随机采样一致改进算法的单目视觉里程计研究 被引量:1

A Research Based on the Modified RANSAC Algorithm of Monocular Vision Odometer
下载PDF
导出
摘要 运用SIFT算法对单目所采集的室外视频图像的相邻两帧进行了特征点的检测与匹配。采用改进的RANSAC算法对所匹配点进行了误匹配点剔除。根据相邻两帧图像特征点的跟踪以及里程计读数作为辅助信息,求解特征点的三维坐标;进而根据视觉里程计模型,达到机器人的定位。实验结果表明,该方法相比传统的里程计定位精度高,比之双目激光等定位方法,又有成本廉价的优点。 Detecting and matching two adjacent frames collected from outdoor environment by using the SIFT al-gorithm, and then eliminating the false matching points with the method of a modified RANSAC algorithm. Thethree-dimensional coordinates of these points according to tracking the two adjacent frame image feature point andthe odometer reading are solve. And the robot positioning according to the visual model of the odometer is achieved.The experimental results show that the positioning precision using this method is higher than the traditional odome-ter, and it is cheaper than binocular and laser.
出处 《科学技术与工程》 北大核心 2014年第26期98-102,共5页 Science Technology and Engineering
基金 2012江苏省"青蓝工程"项目 江苏省智能传感器网络工程技术研究开发中心开放基金(ZK13-02-03)资助
关键词 尺度不变特征变换(SIFT) 单目视觉 里程计 随机采样一致(RANSAC) scale invariant feature transform (SIFT) monocular vision odometer random sample consensus (RANSAC)
  • 相关文献

参考文献10

  • 1Betke M, Gurvits L. Mobile robot localization using landmarks. Ro- botics and Automation, IEEE Transactions on, 1997; 13(2) : 251- 263. 被引量:1
  • 2Leonard J J, Durrant-Whyte H F. Mobile robot localization by track- ing geometric beacons. Robotics and Automation, IEEE Transactions on, 1991 ; 7(3) : 376-382. 被引量:1
  • 3Fox D, Burgard W, Thrun S. Active Markov localization for mobilerobots. Robotics and Autonomous Systems, 1998; 25(3 ) : 195-207. 被引量:1
  • 4Helmick D M, Cheng Y, Clouse D S, et al. Path following using vis- ual odometry for a Mars rover in high-slip environments. Aerospace Conference, Proceedings. IEEE, 2004 ; 2 : 772-789. 被引量:1
  • 5Olson C F, Matthies L H, Schoppers H, et al. Robust stereo ego-mo- tion for long distance navigation. Computer Vision and Pattern Recog- nition, Proceedings IEEE Conference on, 2000; 2:453-458. 被引量:1
  • 6Olson C F, Matthies L H, Schoppers M, et al. Stereo ego-motion im- provements for robust rover navigation. Robotics and Automation, Pro- ceedings 2001 ICRA, IEEE International Conference on, IEEE, 2001 ; 2:1099-1104. 被引量:1
  • 7Lowe D G. Object recognition from local seale-invariant features// Computer vision, 1999. The Proceedings of the Seventh IEEE Inter- national Conference on, 1999 ; 2 : 1150-1157. 被引量:1
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004; 60(2): 91-110. 被引量:1
  • 9Zhang Z. A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000; 22 (11) : 1330-1334. 被引量:1
  • 10Cumani A, Denasi S, Guiducci A, et al. Robot localisation and mapping with stereo vision. WSEAS Transactions on Circuits and Systems, 2004 ; 3 (10) : 2116-2121. 被引量:1

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部