期刊文献+

动态光照下驾驶人面部特征识别算法与试验研究

Algorithm and Experimental Research of Driver's Face Feature Recognition under Dynamic Illumination
原文传递
导出
摘要 基于机器视觉的驾驶人面部特征识别受光照的影响很大。为克服由于动态光照引起的背景干扰,面部特征弱化的问题,采用一种基于KalmanFiltering的光照自适应AKF算法,通过高斯概率密度函数建立Gi(i,j)算子,实现驾驶室背景的分割;在HSI色彩空间中通过闽值分割算法提取面部肤色区域,最终建立了眼鼻坐标搜索模型;进行了不同的照度与头部姿态下的AKF—HSI算法试验,测试统计前景分割率Kfrontground、肤色分割率kski.与眼鼻识别率δ,在2×10~10×10^4lx的照度下,眼鼻的平均识别率艿达到82%-92%。结果表明AKF—HSI融合算法对动态光照下眼鼻识别具有较好的鲁棒性,照度E、头部姿态与硬件设备AGC是眼鼻识别的最主要影响因素。 The recognition of driver's facial features based on machine vision is influenced greatly by illumination. In order to overcome dynamic illumination induced background interference and weakening of facial feature, a self-adaptive AKF algorithm based on Kalman filtering is adopted. Real-time segmentation of driving cab background is realized by Gi (i, j) operator established by Gaussian probability density function. By clustering performance of skin color and facial feature in HSI color space, skin region and facial feature are recognized and located by the threshold segmentation algorithm. Finally, an eye-nostril search model is set up by their coordinate value sequence. The AKF-HSI algorithm experiment is then carried out under different illuminancies and head poses. Frontground segmentation rate kfrontground, skin segmentation rate kskin and eye-nostril recognition rate 8 of different persons are obtained, which shows that the average recognition rate 8 reaches up to 82% - 92% with the outdoor illumination of 2 × 104 - 10 × l04 lx. The result shows that the anti-interference performance of AKF-HSI fusion algorithm is robust to eye-nostril recognition under dynamic illumination. Illuminancy E, head pose and AGC hardware equipment are the most important influence factors of eye-nostril recognition.
出处 《公路交通科技》 CAS CSCD 北大核心 2014年第10期97-103,118,共8页 Journal of Highway and Transportation Research and Development
基金 交通运输部应用基础研究项目(2013319812150) 汽车运输安全保障技术交通行业重点实验室开放基金项目(2013G1502060 2013G15020) 教育部长江学者和创新团队发展计划项目(IRT1286)
关键词 交通工程 眼鼻特征 机器视觉 AKF—HSI融合算法 照度 traffic engineering eye-nostril feature machine vision AKF-HSI fusion algorithm illuminancy
  • 相关文献

参考文献15

  • 1李克强.汽车技术的发展动向及我国的对策[J].汽车工程,2009,31(11):1005-1016. 被引量:38
  • 2程文冬,付锐,袁伟,郭应时.驾驶人疲劳监测预警技术研究与应用综述[J].中国安全科学学报,2013,23(1):155-160. 被引量:26
  • 3GHARAVIAN D, SHEIKHAN M, ASHOFTEDEI, F, el al. Emotion Recognition Improvement Using Normalized Formant Supplementary Features by Hvbrid of DTW-MI,P- GMM Model [ J ]. Neural Computing and Applications, 2013, 22 (6): 1181-1191. 被引量:1
  • 4KHAN N M, KSANTINI R, AHMAD I S, et al. A Novel SVM + NDA Model for Classification with an Application to Face Recognition [J]. Pattern Reeognition, 2012, 45 (1): 66-79. 被引量:1
  • 5ZHOU Xiao-fei, JIANG Wen-ban, TIAN Ying-jie, et al. Kernel Subclass Convex Hull Sample Selection Method for SVM on Face Recognition [ J ]. Neurocomputing, 2010, 73 (10-12) : 2234 -2246. 被引量:1
  • 6郭克友,张春雨.基于视觉的驾驶人疲劳及注意力监测方法[J].公路交通科技,2010,27(5):104-109. 被引量:2
  • 7VALENTI R, SEBE N, GEVERS T. Co,nbining Head Pose and Eye Location Information for Gaze Estimation [J]. IEEE Transactions on hnage Processing, 2012, 21 (2): 802 -815. 被引量:1
  • 8苏宏涛,张艳宁,王晶,赵荣椿.光照变化条件下的人脸识别研究[J].西北工业大学学报,2004,22(4):426-430. 被引量:6
  • 9JIA Ming-xing, XU Heng-yuan, WANG Fei. Research on Driver's Face Detection and Position Method Based on Image Processing [C] // Proceedings of the 2012 24th Chinese Control and Decision Conference. Taiyuan: IEEE, 2012: 1954 - 1959. 被引量:1
  • 10OMIDYEGANEH M, JAVADTALAB A, SHIRMOHAMMADI S. Intelligent Driver Drowsiness Detection through Fusion of Yawning and Eye Closure [ C ] // 2011 IEEE International Conference on Virtual Environments, Human- Computer Interfaces and Measurement Systems. Ottawa: IEEE , 2011:18 -23. 被引量:1

二级参考文献69

  • 1李克强,王跃建,高锋,张磊,郭磊.基于ITS技术的汽车驾驶安全辅助系统[J].汽车技术,2006(z1):32-35. 被引量:16
  • 2王建昕.高效车用汽油机的技术进步[J].内燃机学报,2008,26(S1):83-89. 被引量:34
  • 3欧阳明高.汽车新型能源动力系统技术战略与研发进展[J].内燃机学报,2008,26(S1):107-114. 被引量:37
  • 4陈鲤江,刘铁根,朱均超,邓集杰,刘德瑞,卢萍,王磊.基于饱和度的异色米粒检测方法[J].光电子.激光,2007,18(1):97-99. 被引量:7
  • 5Sobieszczanski-Sobieski J , Kodiyalam S, Yang R Y. Optimization of Car Body Under Constraints of Noise, Vibration, and Harshness (NVH), and Crash[G]. Struct Multidisc Optim 22 :295 -306. 被引量:1
  • 6Marburg Steffen, Hardtke Hans-Jurgen. A General Concept for Design Modification of Shell Meshes in Structural-acoustic Optimization-Part II : Application to a Floor Panel in Sedan Interior Noise Problems[J]. Finite Elements in Analysis and Design, 2002,38 (8) : 737 -754. 被引量:1
  • 7Kook H, Mobes G B, Davies P, et al. An Efficient Procedure for Visualizing the Sound Field Radiated by Vehicle During Standardized Pass by Test[J]. J. Sound Vib. , 2000,233(1): 137 156. 被引量:1
  • 8Douville H, Massonn P, Berry A. On-resonance Transmissibility Methodology for Quantifying the Structure-borne Road Noise of an Automotive Suspension Assembly [ J ]. Applied Acoustics, 2006 (67) :358 -382. 被引量:1
  • 9Zheng Sifa, Wang Binxing, Hao Peng,et al. Sensitivity Analysis and Limit Distribution of Vehicle Noise Sources [ C ]. Internoise 2008, Shanghai, China. 被引量:1
  • 10李显君.国富之源--企业竞争力[M].北京:企业管理出版社,2001. 被引量:2

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部