期刊文献+

铜纳米线拉伸断裂过程的原子尺度分子动力学模拟

Fracture of Cu Nanowire upon Stretch by Atomic Scale Molecular Dynamic Simulation
下载PDF
导出
摘要 基于经典力学势函数的分子动力学模拟方法研究铜纳米线的拉伸断裂过程,并分析断裂前应力、应变和位错行为的关系及断裂后的形貌演化.结果表明:纳米线两端的锥形结构可阻塞位错运动,从而提高其断裂强度;断裂后断口处尖锐的尖端结构形貌会发生自发的回缩和钝化,该过程是尖端上储存的弹性能和的高能结构(如孤立原子、孪晶界和表面弯折等)的自我修复,最终在表面上形成许多能量较低的(111)小平面所致;其物理机理是在温度激活下的能量最小化过程. To explore the fracture mechanism of metal nanowires,a fracture process of Cu nanowire upon stretch was theoretically studied by molecular dynamic (MD)simulations based on embedded-atom method (EAM)potential.The relationship between stress,strain and dislocation before fracture as well as the morphology evolution after fracture was analyzed.The results demonstrate that the tips on the two ends of the nanowire can stuck the dislocation motion.Then the stacking fault by the first partial dislocation could be annihilated by a full dislocation formed by another partial dislocation.This process can thus enhance the fracture strength.The sharp structure after fracture can retract and become obtuse spontaneously.The atomic scale analysis of the morphology change demonstrates that the fracture is a process of eliminating the high energy structures,such as isolated atoms,twin boundary and surface kink.The surface of the fracture finally emerge many (111)facets with lower energies. Therefore the physical mechanism is attributed to the rule of energy minimization.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第5期1039-1043,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11104109)
关键词 铜纳米线 材料断裂 位错运动 微观形貌 Cu nanowire material fracture dislocation motion micro-morphology
  • 相关文献

参考文献18

  • 1Siegel R W. Mechanical Properties of Nanophase Materials [J].Mater Sci Forum, 1996, 235/236/237/238:851-860. 被引量:1
  • 2Nesladek P, Veprek S. Superhard Nanocrystalline Composites with Hardness of Diamond [J]. Phys Status Solidi A, 2000, 177(1): 53-62. 被引量:1
  • 3Karch J, Birringer R, Gleiter H. Ceramics Ductile at I.ow Temperature[J].Nature, 1987, 3710: 556-558. 被引量:1
  • 4HANG Wuwei, ZHOU Min. Atomistic Simulations Reveal Shape Memory of fcc Metal Nanowires [J]. I'hys Rev B, 2006, 73(11): 115409. 被引量:1
  • 5YUE Yonghai, LIU Pan, ZHANG Ze, et al. Approaching the Theoretical Elastic Strain l.imit in Copper Nanowires [J]. Nano Lett, 2011. 11(8): 3151-3155. 被引量:1
  • 6YUE Yonghai, LIU Pan, DENG Qingsong, et al. Quantitative Evidence of Crossover toward Partial Dislocation Mediated Plasticity in Copper Single Crystalline Nancwires [J].Nano Lett, 2012, 12(8) : 4045-4049. 被引量:1
  • 7YUE Yonghai, WANG Lihua, ZHANG Ze, et al. Cross-Over of the Plasticity Mechanism in Nanocrystalline Cu [J]. ChinPhys Lett, 2012, 29(6): 66201-66204. 被引量:1
  • 8WANG Lihua, HAN Xiaodong, LIU Pan, et al. In situ Observation of Dislocation Behavior in Nanometer Grains [J]. Phys Rev Lett, 2010, 105(13) : 135501. 被引量:1
  • 9Liang W, Zhou M, Ke F. Shape Memory Effect in Cu Nanowires [J]. Nano Lett, 2005, ,5(10): 2039 2043. 被引量:1
  • 10Kang J W, Hwang H J. Mechanical Deformation Study of Copper Nanowire Using Atomistic Simulation [J]. Nanotechnology, 2001, 12(3): 295-300. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部