期刊文献+

采用压缩采样匹配追踪算法的频谱感知 被引量:2

Spectrum Sensing Using the Algorithm of Compressive Sampling Matching Pursuit
下载PDF
导出
摘要 频谱资源的匮乏成为无线电发展的瓶颈,解决频率匮乏有两类方法:一是提高频谱利用率;二是扩大可利用的频率范围。频谱感知技术能提高频谱利用率,但在高频的应用中会面对过高的采样速率、较大的数据量,这对硬件实现提出了艰巨的挑战。本文根据无线电频谱稀疏性介绍一种基于调制宽带转换器的压缩采样匹配追踪(CoSaMP)算法。本文利用调制宽带转换器对无线电信号进行亚奈奎斯特采样,再利用CoSaMP算法对采样后的自相关矩阵求解。本文的方法不仅能应用在更高的频谱,且能提高频谱利用率。仿真结果表明:该方法能以一个较低的采样速率对信号进行采样,且CoSaMP算法的恢复误差要小于OMP和ROMP算法。 The lack of radio spectrum resources becomes the bottleneck in radio. There are two ways to solve the shortage of frequencies : the first is to improve the spectrum utilization; the second is to expand the available frequency range. The technology of spectrum sensing could improve the spectrum efficiency, but the application of high frequency faces a high sampling rate, a large amount of data, and it is a huge challenge for the hardware implementation. In this paper, the modulated wideband converter with compressive sampling matching pursuit (CoSaMP) algorithm based on the sparsity of the radio spectrum is used in spectrum sensing. The radio signal is sampled by using the modulated wideband converter with a sub-Nyquist sampling rate and then CoSaMP algorithm is used to solve the sampled autocorrelation matrix. The proposed method can not only used in the high spectrum, but also can improve spectrum utilization. The simulation results show that this method can sample the signal with a lower sampling rate, and the recovered errors of CoSaMP algorithm are less than OMP and ROMP algorithm.
出处 《信号处理》 CSCD 北大核心 2014年第9期1086-1090,共5页 Journal of Signal Processing
基金 国家自然科学基金资助项目(U1231122)
关键词 认知无线电 频谱感知 调制宽带转换器 压缩采样匹配追踪算法 频谱空穴 cognitive radio spectrum sensing modulated wideband converter compressive sampling matching pursuit algorithm spectrum holes
  • 相关文献

参考文献21

  • 1Sun H, Nallanathan A, Wang C X, et al. Wideband spec- trum sensing for cognitive radio networks: a survey [ J ]. Wireless Communications, IEEE, 2013, 20(2) : 74- 81. 被引量:1
  • 2Sun H, Chiu W Y, Nallanathan A. Adaptive compressive spectrum sensing for wideband cognitive radios [ J ]. Com- munications Letters, IEEE, 2012, 16(11) : 1812-1815. 被引量:1
  • 3谭学治,姜靖,孙洪剑.认知无线电的频谱感知技术研究[J].信息安全与通信保密,2007,29(3):61-63. 被引量:25
  • 4Sun H, Laurenson D I, Wang C X. Computationally tractable model of energy detection performance over slow fading channels [ J ]. Communications Letters, IEEE, 2010, 14(10) : 924-926. 被引量:1
  • 5漆渊,彭涛,钱荣荣,王文博.认知无线电中基于循环平稳特征的频谱感知方法[J].重庆邮电大学学报(自然科学版),2009,21(3):353-357. 被引量:17
  • 6Landau H J. Necessary density conditions for sampling and interpolation of certain entire functions [ J ]. Acta Mathematica, 1967, 117(1):37-52. 被引量:1
  • 7Papoulis A. Generalized sampling expansion[ J]. Circuits and Systems, IEEE Transactions on, 1977, 24 ( 11 ) : 652 - 654. 被引量:1
  • 8Black Jr W C, Hodges D. Time interleaved converter ar- rays [ J ]. Solid-State Circuits, IEEE Journal of, 1980, 15(6) : 1022-1029. 被引量:1
  • 9Donoho D L. Compressed sensing[ J]. Information Theo- ry, IEEE Transactions on, 2006, 52(4) : 1289-1306. 被引量:1
  • 10Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples: Exact signal reconstruction from highly incomplete frequency information [ J ]. Information Theory, IEEE Transactions on, 2006, 52(2):489-509. 被引量:1

二级参考文献16

  • 1李圣安,王保云.一种新的智能无线技术——认知无线电技术[J].电信快报,2005(11):18-20. 被引量:12
  • 2CABRIC D, TKACHENKO A, BRODERSEN R W. Spectrum sensing measurements of pilot, energy, and collaborative detection [ C ]//Military Communications Conference, Oct. 23-25,2006, Washington DC, USA : [ s. n. ] , 2006 : 1-7. 被引量:1
  • 3ONER M, JONDRAL F. On the extraction of the channel allocation information in spectrum pooling systems [ J ]. IEEE Journal on Selected Areas in Communications, 2007, 25 (3) : 558-565. 被引量:1
  • 4TKACHENKO A, CABRIC D, BRODERSEN R W. Cy- clostationary feature detector experiments using reconfigutable BEE2 [ C ]//New Frontiers in Dynamic Spectrum Access Networks, Apr. 17-20,2007, Dublin, Ireland: [ s. n. ] , 2007 : 216-219. 被引量:1
  • 5LUNDEN J, KOIVUNEN V, HUTTUNEN A,et al. Spectrum sensing in cognitive radios based on multiple cyclic frequencies [ C ]//Cognitive Radio Oriented Wireless Networks and Communications, Orlando, USA, Jul. 31- Aug. 3, 2007, Orlando, USA:[s. n. ] ,2007. 被引量:1
  • 6GARDNER W A. Introduction to random process with applications to signals and systems [ M ]. New York : Macmillan, 1986:301-352. 被引量:1
  • 7GARDNER W M. Measurement of spectral correlation [ J ]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1986, 34 (5) : 1111-1123. 被引量:1
  • 8ONER M, JONDRAL F. Cyclostationarity based air interface recognitions for software radio systems [ C ]//Radio and Wireless Conference, Sep. 19-22, 2004, Atlanta, USA : [ s. n. ], 2004:263-266. 被引量:1
  • 9DANDAWATE A V, GIANNAKIS G B. Statistical tests for presence of cyclostationarity [ J ]. IEEE Transaction on Signal Processing, 1994, 42 (9) : 2355-2369. 被引量:1
  • 10SADLER B M, DANDAWATE A V. Nonparametric estimation of the cyclic cross spectrum [ J ]. IEEE Transaction on Information Theory, 1998, 44 (1) : 351-358. 被引量:1

共引文献40

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部