期刊文献+

基于混合方式的贝叶斯网络结构学习 被引量:2

Structural Learning Bayesian Network Based on a Hybrid Method
下载PDF
导出
摘要 基于最大主子图分解技术和遗传算法,提出了一种混合方式的贝叶斯网络结构学习算法。该算法首先根据领域知识和观察数据构造网络的无向独立图,并对其进行最大主子图分解,再利用遗传算法学习每个子图的结构,同时进行合并修正得到最优的贝叶斯网络结构。分解过程将一个学习大网络问题转化为小子图的学习问题,降低了搜索空间。仿真结果表明,新算法的学习效果与运行效率均有明显提高。 A hybrid algorithm for structure learning of Bayesian network which based on maximal prime decomposition technology and genetic algorithm is proposed. The algorithm first constructs the undirected independence graph of a BN according to domain knowledge and observation data. Then it performs MPD to decompose the undirected graphs. The genetic algorithm is used to learn the local structure and combine the subgraphs then correct them to obtain the final BN. The decomposition splits the problem of learning a large network into some problems of learning small subgraphs. Experimental results show that the learning ability and performance of novel algorithm are improved significantly.
出处 《电子科技》 2014年第10期115-118,共4页 Electronic Science and Technology
关键词 贝叶斯网络 Markov边界 最大主子图分解 遗传算法 Bayesian network Markov boundary maximal prime decomposition genetic algorithm
  • 相关文献

参考文献7

  • 1PEARL J F. Propagation and structuring in belief networks [ J ]. Artificial Intelligence, 1986,29 (3) :241 - 288. 被引量:1
  • 2PELLET J P, ELISSEEF A. Using markov blankets for causal structure learning [J]. Journal of Machine Learning Re- search,2008,9 : 1295 - 1342. 被引量:1
  • 3CHEN Xuewen, ANANTHA G, LIN Xiaotong. Improving bayes- ian network structure learning with mutual information - based node ordering in the K2 algorithm [ J ]. IEEE Transactions on Knowledge and Data Engineering,2lX: ,20 (5) : 1 - 13. 被引量:1
  • 4TSAMARDINOS I, BROWN L F, ALIFERIS C F. The max - min hillclimbing BN structure learning algorithm [J]. Ma- chine Learning,2006,65 ( 1 ) : 31 - 78. 被引量:1
  • 5GOLDBERG D E. Genetic algorithms in search, optimization and machine learning [ M ]. Reading, MA : Addison Wesley, 1989. 被引量:1
  • 6OLESEN K, MADSEN A. Maximal prime subgraph decompo- sition of Bayesian networks [J]. IEEE Transactions on Sys- tem Man Cybern B ,2002 (32) :21 -31. 被引量:1
  • 7LARRANAGE P, POZA M, YURRAMENDL Y, et al. Struc- ture learning of bayesian networks by genetic algorithms: a performance analysis of control parameters [ J ]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 1996, 18(9) :912 -926. 被引量:1

同被引文献17

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部