摘要
石墨烯作为锂离子电池负极材料时,比克容量是石墨的两倍,但是纯石墨烯因其在充放电过程中团聚,导电循环性能差.为了延长石墨烯的循环寿命,一种有效的方法是在石墨烯中加入过渡金属氧化物(CoOx,CuOx,NiOx,FeOx和MnOx等).这些过渡金属氧化物比克容量高(700~1000 mAh/g),但是在充放电过程中发生体积膨胀,导致其循环性能差.过渡金属氧化物与石墨烯复合后,能够弥补彼此的缺点,具有优异的电化学性能.综述了石墨烯/过渡金属氧化物复合物在锂离子电池负极材料上的应用,并研究了石墨烯加入后对复合材料的性能提升的原因.
Graphene,a two-dimension single layer graphite,is the new carbon material beyond the diamond,fullerene,carbon nanotube and graphite.Graphene exhibits excellent physical and chemical properties,such as large electronic conductivity,high thermal conductivity,high mechanical strength and vast surface area.This led to an explosion of interest in the study of graphene,aiming for wide-ranging and diversified technological applications.This review highlights graphene/transition metal oxides as anode materials for lithium ion batteries.Graphene is a favorer in lithium ion batteries because it is an idea matrix for loading the active materials on its surface and graphene can offer high electronic conductivity as well as buffer effect material for accommodating the volume change of transition metal oxide as anode materials for lithium ion batteries.The transition metal oxides,namely CoOx,CuOx,NiOx,FeOx and MnOx,were paid much attention as anode materials for their high specific capacity (700-1000 mAh/g).However,the cycling performance and rate capability of transition metal oxides are undesired because of their low electronic conductivity and large volume change during charge/discharge process.Therefore,it is an effective way to solve these problems by cooperated with the graphene.And we also study the influence of graphene on the electrochemical performance of lithium ion batteries.
出处
《材料导报》
EI
CAS
CSCD
北大核心
2014年第17期136-140,144,共6页
Materials Reports
基金
科研院所技术开发研究专项资金(2013EG113174)
关键词
石墨烯
锂离子电池
负极材料
过渡金属氧化物
graphene
lithium ion batteries
anode material
transition metal oxides