期刊文献+

基于支撑向量机的CMOS运放可行域模型

Feasible Performance Modeling of Analog Circuit Based on Support Vector Machine
下载PDF
导出
摘要 在进行模拟与混合信号集成电路的行为级设计时,需要各种基本单元与功能电路的性能可行域模型。可行域模型构造可以看作是性能参数空间中的一个二分类问题。研究了采用支撑向量机进行电路可行域模型构造的方法,给出了建模过程;并以一个常用的Miller补偿CMOS两级运算放大器为例,建立基于支撑向量机的可行域模型,通过数值实验验证了模型的正确性。 There need all kinds of the performance feasible region model to basic unit and function circuit in the analog and mixed-signal IC behavior design level. The modeling of feasible domain can be looked as a binary classification problem in the space of performance parameters. This paper mainly studies the method using support vector machine(SVM) to make the feasible region model,and gives its process; then,it takes a common Miller compensation CMOS two-stage operational amplifier as example,and gets the feasible domain model based on SVM. At the last,it verifies the correctness of the model through the numerical experiment.
出处 《杭州电子科技大学学报(自然科学版)》 2014年第5期106-110,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 模拟集成电路 层次化设计 可行域模型 支撑向量机 analog integrated circuits hierarchical design the model of feasible region support vector ma-chine
  • 相关文献

参考文献7

  • 1张红莉..模拟集成电路设计方法学及模拟IP设计技术的研究[D].合肥工业大学,2005:
  • 2陈鹏..基于Pareto多目标遗传算法的CMOS运放优化设计[D].杭州电子科技大学,2011:
  • 3Nuzzo P, De Bemardinis F, Vincentelli A S. Platform-based mixed signal design: Optimizing a high-performance pipelined ADC [ J ]. Springer. 2006.9 (49). 343 - 358. 被引量:1
  • 4De Bernardinis F, Jordan M I, SangiovanniVincentelli A. Support Vector Machines for Analog Circuit Performance Representation[ J]. ACM. 2003.2(6). 964 -969. 被引量:1
  • 5Boolchandani D, Ahmed A, Sahula V. Efficient kernel functions for support vector machine regression model for analog circuits' performance evaluation [ J ]. Springer. 2011.66 ( 1 ) : 117 - 128. 被引量:1
  • 6Manuel Barros Jorge Guilherme Horta. An Evolutionary Optimization Kernel using a Dynamic GA-SVM Model applied to Analog IC Design[ C]. Seville: Circuit Theory and Design. 2007:32 -35. 被引量:1
  • 7张晓宇.基于动态可行域划分的SVM主动学习[J].计算机科学,2012,39(7):175-177. 被引量:3

二级参考文献12

  • 1Zhu X. Semi-supervised learning literature survey [R]. Wiscon- sin Computer Sciences, University of Wisconsin-Madison, 2008. 被引量:1
  • 2Cohn A, Ghahramani Z, Jordan M I. Active learning with statis- tical models [J]. Journal of Artificial Intelligence Research, 1996,4(1) 129-145. 被引量:1
  • 3Mccallum A, Nigam K. Employing [M] in pool-based active learning for text classification[C]/,/Proceeding of the 15th In- ternational Conference on Machine Learning. San Francisco: Morgan Kaufmann, 1998: 350-358. 被引量:1
  • 4Burges J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2 (2) :121-167. 被引量:1
  • 5Mitchell T. Generalization as search [J]. Artificial Intelligence, 1982,18(2) 203-226. 被引量:1
  • 6Tong S, Koller D. Support vector machine active learning with applications to text classification [J]. The Journal of Machine Learning Research, 2000,2 ( 1 ) : 45-66. 被引量:1
  • 7Tong S, Chang E. Support vector machine active learning for ima- ge retrieval [C]//Proceedings of the 9th ACh)I International Conference on Multimedia New York_. ACM. 2001. ] 07-11. 被引量:1
  • 8Zhang X, Cheng J, Lu H, et al. Weighted co-SVM for image re- trieval with MVB strategy[C]//Proceedings of 2009 IEEE In- ternational Conference on Image Processing. Saxa Antonio, TX: Signal Processing Society, 2007 .- 517-520. 被引量:1
  • 9Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early yearstJ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2000, 22 (12) : 1349-1380. 被引量:1
  • 10Lew M S, Sebe N, Djeraba C, et al. Content-based multimedia in- formation retrieval state of the art and challenges [J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2006,2 (1) 1-19. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部