期刊文献+

基于LDA模型的微博话题发现技术研究 被引量:10

ON LDA-BASED MICROBLOGGING TOPIC DETECTION
下载PDF
导出
摘要 微博中存在着数以亿计的用户,这些用户每天发布大量的信息。这些海量的微博信息给热点话题发现提出了严峻的挑战。应用LDA(Latent Dirichlet Allocation)模型对微博中隐含的话题进行建模,利用话题间的共享词汇将话题构成一个无向加权图,并通过PageRank算法将话题进行排名。实验结果表明,排名后返回给用户的话题的准确性明显高于未排名的结果。 There are tens of millions of users in microblogging, and they publish massive messages every day. These massive microblogging messages impose severe challenge to hot topics detection. In this paper we model the concealed topics in microblogging with LDA (latent Dirichlet Allocation) model, form the topics as an undirected weighted graph by utilising the sharing words among the topics, and rank the topics in the graph with PageRank algorithm. Experimental results show that the topics returned to users after the PageRank ranking is more accurate than that of non-ranking.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第10期24-26,66,共4页 Computer Applications and Software
基金 江苏省自然科学基金项目(3202uj221)
关键词 微博 话题 排名 LDA模型 Microblogging Topic Graph Ranking Latent Dirichlet allocation model
  • 相关文献

参考文献12

  • 1Blei D,Ng A, Jordan M,et al. Latent dirichlet allocation[ J]. Journal ofMachine Learning Research,2003 (3) :993 -1022. 被引量:1
  • 2Yang Y, Pierce T, Carbonell J. A study on Retro-spective and On-LineEvent detection [ C ]//Proceedings of the 21st Annual InternationalACM SIGIR Conference on Research and Development in InformationRetrieval, 1998 :28 -36. 被引量:1
  • 3Trieschnigg D, Kretaij W. TNO hierarchical topic detection report[ C]//The 7 th Topic Detection and Tracking Conference ,2004. 被引量:1
  • 4Papka R, Allan J. On Line New Event Detection Using Single PassClustering[ R]. UMass Computer Science, 1998. 被引量:1
  • 5Cataldi L,Caro D. Schifanella C. Emerging Topic Detection on Twitterbased on Temporal and Social Terms Evaluation [ C ] //Proceedings ofthe Tenth International Workshop on Multimedia Data Mining,Wash-ington, 2010,1 -10. 被引量:1
  • 6Phuvipadawat S, Murata T. Breaking News Detection and Tracking inTwit-ter [ C ] //2010 IEEE/WIC/ACM International Conference on WebIntelligence and Intelligent Agent Technology, Toronto, 2010 : 120-123. 被引量:1
  • 7Huang B,Yang Y,Mahmood A,et al. Microblog Topic Detection Basedon LDA Model and Single-Pass Clustering [ C ] //Rough Sets and Cur-rent Trends in Computing, Springer, 2012 : 166 -171. 被引量:1
  • 8Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author-topic model forauthors and documents [ C ] // Proc. of Conf. on Uncertainty in ArtificialIntelligence,2004,487 - 494. 被引量:1
  • 9Mccallum A,Corrada-Emmanuel A,Wang X. Topic and role discoveryin social networks [ C ]//Proc. of Int. Joint Conf. on Articial Intelli-gence,2005 :786 _791. 被引量:1
  • 10Page L, Brin S, Motwani R, et al. The PageRank citation ranking:bringing order to the web[R]. Stanford InfoLab,1999. 被引量:1

同被引文献87

  • 1骆卫华,于满泉,许洪波,王斌,程学旗.基于多策略优化的分治多层聚类算法的话题发现研究[J].中文信息学报,2006,20(1):29-36. 被引量:38
  • 2中国互联网络信息中心(CNNIC).第36次中国互联网络发展状况统计报告[EB/OL]. http: //www. cnnic. net. cn/hlwfzyj/hlwxzbg/hlwtjbg/201507/P020150723549500667087.pdf’ 2015-7-22. 被引量:6
  • 3Allan J,Carbonell J,Doddington G,et al.Topic detection and tracking pilot study final report[C]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop,Feb 1998:194-218. 被引量:1
  • 4Sayyadi H,Hurst M,Maykov A.Event detection andtrackingin social streams[C]//Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media(ICWSM 09),San Jose,California,USA,May 17-20,2009:311-314. 被引量:1
  • 5Ozdikis O,Senkul P,Oguztuzun H.Semantic expansion of hashtags for enhanced event detection in Twitter[C]//Proceedings of the 1st International Workshop on Online Social Systems(WOOS),2012. 被引量:1
  • 6Cataldi M,Di Caro L,Schifanella C.Emerging topic detection on twitter based on temporal and social terms evaluation[C]//Proceedings of the Tenth International Workshop on Multimedia Data Mining(MDMKDD).ACM,2010:4. 被引量:1
  • 7Alvanaki F,Michel S,Ramamritham K,et al.See what’s enblogue:real-time emergent topic identification in social media[C]//Proceedings of the 15th International Conference on Extending Database Technology.ACM,2012:336-347. 被引量:1
  • 8Unankard S,Li X,Sharaf M A.Location-based emerging event detection in social networks[M].Web Technologies and Applications.Springer Berlin Heidelberg,2013. 被引量:1
  • 9Duds R O,Hart P E.Pattern classification and scene analysis[M].A Wiley lnterscience Publication,John Wiley and Sons,Inc,1973. 被引量:1
  • 10Weng J,Lee B S.Event Detection in Twitter[J].Proceedings of Association for the Advancement of Artificial Intelligence,2011(11):401-408. 被引量:1

引证文献10

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部