期刊文献+

崇明东滩滨海围垦湿地CO2通量贡献区分析 被引量:11

CO_2 Flux Footprint Analysis of Coastal Polder Wetlands in Dongtan of Chongming
下载PDF
导出
摘要 利用通量贡献区模型(FSAM)对崇明东滩滨海围垦湿地生长季和非生长季的CO2通量贡献区(Footprint)进行分析,结果表明:(1)135°~225°方向为生长季主风向,而315°~45°方向为非生长季主风向.(2)在生长季主风向,大气稳定状态下的Footprint 函数取得最大值时的位置(Xm)为96. 84 m,90%的通量信息来源于迎风向41. 04~378. 20 m、垂直迎风向-79. 73~79. 73 m 范围内;而大气不稳定状态下的Xm 为75. 28 m,90%的通量信息来源于迎风向33. 83~257. 07 m、垂直迎风向-82. 29~82. 29 m 范围内.在非生长季主风向,大气稳定状态下的Xm 为82. 68m,90%的通量信息来源于迎风向36. 73~282. 49 m、垂直迎风向-120. 31~120. 31 m 范围内;而大气不稳定状态下的Xm为56. 49 m,90%的通量信息来源于迎风向25. 90~179. 90 m、垂直迎风向-76. 30~76. 30 m 范围内.(3) 非主风向贡献区分布与主风向有相似的规律.在生长季和非生长季,大气稳定状态下的贡献区面积均要大于大气不稳定状态下的贡献区面积;而在相同的大气稳定状态下,生长季的贡献区面积要大于非生长季.(4)在非生长季,主风向观测的垂直迎风向范围要远大于其他风向,这可能和该条件下的横向风速脉动标准差与摩擦风速的比值(σv / u?)较大有关. Analysis of CO2 Footprint of coastal polder wetlands in Dongtan of Chongming during the crop growing season and dormant season was done using the flux source area model(FSAM). Results show that(1) the prevailing wind came from 135°- 225° direction during the crop growing season,and from 315°- 45° during the dormant season;(2) During the crop growing season,the location where the footprint function reaches the maximum in vaule(Xm) under stable atmosphere was at 96. 84 m in the direction of the prevailing winds; 90% of the information about fluxes was obtained in the range of 41. 04- 378. 20 m in the upwind direction and of- 79. 73- 79. 73 m in the vertical upwind direction,and Xm under unstable atmosphere was at 75. 28 m,90% of the information about fluxes was obtained in the range of 33. 83-257. 07 m in the upwind direction and of- 82. 29- 82. 29 m in the vertical upwind direction,while during the dormant season,Xmunder stable atmosphere was at 82. 68 m in the prevailing wind direction,90% of the information about fluxes was obtained in the range of 36. 73- 282. 49 m in the upwing direction and of- 120. 31- 120. 31 m in the vertical upwind direction,and Xmunder unstable atmosphere was at 56. 49 m in the prevailing wind direction,90% of the information about fluxes was obtained in the range of 25. 90- 179. 90 m in the upwind direction and of- 76. 30- 76. 30 m in the vertical upwind direction;(3) Similar patterns of footprint distribution were found in the prevailing and non-prevailing wind directions,showing that the source area was much larger under stable atmosphere than under unstable atmosphere,regardless of the season,growing or dormant,and under similar stable atmosphere,the source area was larger in the growing season than in the dormant season;(4) In the dormant season,the range of observed vertical upwind direction was larger in the prevailing wind direction than in the other directions,which may be explained by the high σv/u*ratio( standard deviation of horizontal wind velocity fluctuation vs fricti
出处 《生态与农村环境学报》 CAS CSCD 北大核心 2014年第5期588-594,共7页 Journal of Ecology and Rural Environment
基金 国家科技支撑计划(2010BAK69B15) 上海市科委科技创新行动计划(11dz1210903)
关键词 通量贡献区模型 滨海围垦湿地 通量贡献区 FSAM(Flux Source Area model) coastal reclaimed wentland Footprint
  • 相关文献

参考文献32

  • 1SUYKER A E,VERMA S B.Year-Round Observations of the NetEcosystem Exchange of Carbon Dioxide in a Native TallgrassPrairie[J].Global Change Biology,2001,7(3):279-289. 被引量:1
  • 2BALDOCCHI D D,HINCKS B B,MEYERS T P.Measuring Bio-sphere-atmosphere Exchanges of Biologically Related Gases WithMicrometeorological Methods[J].Ecology,1988,69(5):1331-1340. 被引量:1
  • 3BALDOCCHI D D,WILSON K B.Modeling CO2 and Water VaporExchange of a Temperate Broadleaved Forest Across Hourly to Dec-adal Time Scales[J].Ecological Modeling,2001,142(1):155-184. 被引量:1
  • 4BLACK T A,DENHARTOG G,NEUMANN H H,et al.Annual Cy-cles of Water Vapour and Carbon Dioxide Fluxes in and Above aBoreal Aspen Forest [J]. Global Change Biology,1996,2 (3):219-229. 被引量:1
  • 5RANNIK ü,AUBINET M,KURBANMURADOV O,et al.FootprintAnalysis for Measurements Over a Heterogeneous Forest [J].Boundary-Layer Meteorology,2000,97(1):137-166. 被引量:1
  • 6SCHMID H P. Experimental Design for Flux Measurements:Matching Scales of Observations and Fluxes[J].Agricultural andForest Meteorology,1997,87(2):179-200. 被引量:1
  • 7SCHUEPP P H, LECLERC M Y, MACPHERSON J I, et al.Footprint Prediction of Scalar Fluxes From Analytical Solutions ofthe Diffusion Equation[J].Boundary-Layer Meteorology,1990,50(1/2/3/4):355-373. 被引量:1
  • 8HAENEL H, GRüNHAGE L. Footprint Analysis: A ClosedAnalytical Solution Based on Height-Dependent Profiles of WindSpeed and Eddy Viscosity[J].Boundary-Layer Meteorology,1999,93(3):395-409. 被引量:1
  • 9米娜,于贵瑞,温学发,孙晓敏.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究[J].中国科学(D辑),2006,36(A01):22-33. 被引量:24
  • 10WILSON J D,SWATERS G E. The Source Area Influencing aMeasurement in the Planetary Boundary Layer:" The Footprint"and the " Distribution of Contact Distance" [J]. Boundary-LayerMeteorology,1991,55(1/2):25-46. 被引量:1

二级参考文献223

共引文献298

同被引文献185

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部