期刊文献+

非线性高阶共振非局部边值问题 被引量:1

Nonlinear higher-order nonlocal boundary value problems at resonance
下载PDF
导出
摘要 针对一类新的非线性n阶共振非局部边值问题,运用Mawhin重合度理论,研究了边值问题解的若干存在性结论.结果表明:通过建立Sobolev空间和Banach空间,构造指标为零的Fredholm算子和满足适当条件的线性连续映射及其格林函数,当非线性项满足线性增长性条件时,同样可以得到共振边值问题解的存在性.该结果丰富了非线性高阶共振边值问题定解理论的相关成果,为工程实际问题提供了理论依据. For a new class of nth -order nonlocal boundary value problems at resonance, some existing resultswere concerned by using the coincidence degree theory of Mawhin, The results showed that the existence of solutions to boundary value problems at resonance was also obtained under linear growth assumptions on nonlinear terms by establishing Sobolev Space and Banach Space and constructing Fredholm operator of indexzero and a linear continuous projector satisfied suitable conditions and its Green function. The results enriched the relevant results of nonlinear boundary value problems at resonance and provided theoretical support of practical engineering problems.
作者 张海娥
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2014年第5期700-703,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(10801068) 河北省高校科技研究基金资助项目(Z2013016) 唐山市科技计划基金资助项目(12110233b)
关键词 非线性 高阶 非局部 共振 边值问题 存在性 格林函数 重合度理论 nonlinear higher-order nonlocal at resonance boundary value problem existence green i-unction coincidence degree theory
  • 相关文献

参考文献10

  • 1Cabada A,Liz E.Boundary value problems for higher order ordinary differential equations with impulses[J].Nonlinear Analysis,1998 (32):775-786. 被引量:1
  • 2Du Z J,Ge W G, Zhou M R.Singular perturbations for third-order nonlinear multi-point boundary value problem[J].Journal of Differential Equations,2005(218):69-90. 被引量:1
  • 3Graef J R,Yang B.Positive solutions of a third order nonlocal boundary value problem[J].Diserete Continuous Dynamic System Series,2008(1): 89-97,. 被引量:1
  • 4Webb J R L,Infante G.Positive solutions of nonlocal boundary value problems:a unified approach[J].Joumal of London Mathematical Society,2006,74(2):673-693. 被引量:1
  • 5陈一鸣,赵所所,徐增辉,王乾,武永兵.一类强奇异积分方程的数值求解方法[J].辽宁工程技术大学学报(自然科学版),2011,30(1):157-160. 被引量:7
  • 6Wang Y, Ge W.Existence of solutions for a third order differential equation with integral boundary conditions[J].Computers and Mathematics with Applications,2007,53:144-154. 被引量:1
  • 7高雷阜,王金希,吴洪涛.Banach空间中一类变分包含解的存在性和唯一性[J].辽宁工程技术大学学报(自然科学版),2012,31(2):252-255. 被引量:8
  • 8Lin X J,Du Z J,Ge W GSolvability of multiple boundary value problems at resonance for Higher-order ordinary differential equations[J]. Computers and Mathematics with Applications,2005(49): 1-11. 被引量:1
  • 9Mawhin J.Topological degree methods and nonlinear boundary value problems for nonlinear differential equations[C]//Fitzpertriek P M, Martelli M,Nussbaum R.Leeture Notes in Mathematies,Topologieal Methods for ODE.Berlin:Springer-Verlag,1979(1 573):279-298. 被引量:1
  • 10Liu B.Solvability of multi-point boundary value problem at resonance (11)[J].Applied Mathematics and Computation,2003(136):353-377. 被引量:1

二级参考文献13

  • 1Martin P A. Exact solution of a simple hypersingular integral equation [J]. Integral Equations Appl., 1992(4): 197-204. 被引量:1
  • 2Chakrabarti A, Mandal B N. Derivation of the solution of a simple hypersingular integral equation[J]. Int. J. Math. Educ. Sci.Technol., 1998(29):47-53. 被引量:1
  • 3Boykov I V, Romaaova E G. Reports of higher educational institutions: the collocation method of solution of hypcrsingular integral equations[R]. The Penza State University: Natural Scienoes, 2006, 5 (in Russian). 被引量:1
  • 4Martin B N, Beta G H, Approximate solution for a class of hypersingular integral equations[J]. Applied Mathematics Letters,2006(29): 1286- 1290. 被引量:1
  • 5Chakrabarti A, Vanden Berghe G. Approximate solution of singular integralequations[J]. Appl.Math.Lett.,2004( 17):553 -559. 被引量:1
  • 6MA Yifei. A study of numerical solution for the model of optimal control theory[J]. Journal of Liaoning Technical University, 2001: 828-832. 被引量:1
  • 7Dzhishkariani A. Approximate solution of one class of singular integral equations by means of the projecdtive-uteratuve methods[J]. Meth.Differ.Equations of Math.Phys.,2005(34): 1-76. 被引量:1
  • 8Mandal B N, Gayen R, Chowdhruy. Water wave scattering by two symmetric circular arc shaped thin plates[J]. J. Engrg. Math.,2002(44): 297-303. 被引量:1
  • 9Chan Y S, Fannjiang AC, Paulino G H. Integral equations with hypersingular kernels-theory and applications to fractrue mechanics[J]. Intemat. J.Engrg.Sci., 2003(41): 683-720. 被引量:1
  • 10Boykov I V, Ventsel E S. An approximate solution of hypersingularintegral equations[J]. Applied Mathematics, 2008(60): 607-628. 被引量:1

共引文献13

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部