期刊文献+

分块策略实现图像椒盐噪声密度估计 被引量:4

Image salt-and-pepper noise estimation based on partitioning strategy
原文传递
导出
摘要 目的椒盐噪声是造成图像污染的常见因素之一,椒盐噪声密度的估计对椒盐去噪过程中滤波窗口大小的选择具有指导作用。为此提出了一种基于分块策略的椒盐噪声密度估计算法。方法首先对图像按行列等分后形成多个图像子块,统计每个子块中灰度为0或255的像素点个数并排序,然后根据排序后个数差分值函数特征对子块进行筛选,最后将所有候选子块噪声密度估计值的中值作为对整幅图像噪声密度的估计。结果为验证算法的有效性,选取了两组不同类型的图像进行仿真,与现有椒盐噪声密度估计算法对比噪声密度估计结果。仿真实验结果表明,当图像自身包含较多灰度为0或255的像素点时,本文算法的噪声密度估计精度优于现有各种算法,标准差比现有算法小近一个数量级。当图像自身不包含灰度为0或255的像素点时,本文算法也能达到现有算法中最优的估计效果。结论本文算法不仅能准确估计不同强度下的噪声密度,而且适用于自身包含灰度为0或255的像素点多的椒盐噪声图像。 Objective Salt-and-pepper noise is one of the most common factors causing image contamination.Salt-and-pepper noise estimation has a guiding role in determining the size of the filtering window in denoising.Thus,we propose an algorithm based on the partitioning strategy to estimate salt-and-pepper noise density.Method The proposed algorithm horizontally and vertically splits the image equally into sub-blocks,counts the pixels of the sub-blocks with gray levels of 0 or 255,sorts all sub-blocks,selects candidate sub-blocks according to the characteristics of the different equences of the sorted pixel numbers,and uses the median of the noise density estimations of all the candidate sub-blocks as to estimate the noise density of the whole image.Result To evaluate the proposed approach,two different types of images are processed using the presented method,and the noise density estimation results are compared with those of existing salt-and-pepper noise density estimation algorithms.Conclusion Simulation results show that the new algorithm can accurately estimate noise density under different intensities and is effective for images that have many extreme pixels with gray levels of 0 or 255.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第9期1288-1296,共9页 Journal of Image and Graphics
基金 国家青年科学基金项目(61202318) 福建省自然科学基金项目(2012D109) 福建省高校杰出青年科研人才培育计划项目(JA13247) 福建省教育厅B类项目(JB13166) 闽江学院科研项目(YKY12004)
关键词 椒盐噪声 密度估计 中值滤波 直方图 salt-and-pepper noise density estimation median filter histogram
  • 相关文献

参考文献11

二级参考文献51

共引文献70

同被引文献40

  • 1张旭明,徐滨士,董世运,吴毅雄.去除脉冲噪声的自适应开关中值滤波[J].光电工程,2006,33(6):78-83. 被引量:23
  • 2冈萨雷斯,伍兹,艾丁斯.数字图像处理:MATLAB版[M].北京:电子工业出版社,2005:289-296. 被引量:4
  • 3Srinivasan K S, Ebenezer D. A new fast and efficient decision-based algorithm for removal of high-density impulse noises[J]. Signal Processing Letters, IEEE, 2007, 14(3): 189-192. 被引量:1
  • 4Aiswarya K, Jayaraj V, Ebenezer D. A new and efficient algorithm for the removal of high density salt and pepper noise in images and videos[C] //Proceedings of Second International Conference on Computer Modeling and Simulation.Sanya,China:IEEE Press,2010, 4: 409-413. 被引量:1
  • 5Esakkirajan S, Veerakumar T, Subramanyam A N, et al. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter[J]. Signal Processing Letters, IEEE, 2011, 18(5): 287-290. 被引量:1
  • 6Nasri M, Saryazdi S, Nezamabadi-pour H. A fast adaptive salt and pepper noise reduction method in images[J]. Circuits, Systems, and Signal Processing, 2013, 32(4): 1839-1857. 被引量:1
  • 7Ramadan Z M. Efficient restoration method for images corrupted with impulse noise[J]. Circuits, Systems, and Signal Processing, 2012, 31(4): 1397-1406. 被引量:1
  • 8Bhadouria V S, Ghoshal D, Siddiqi A H. A new approach for high density saturated impulse noise removal using decision-based coupled window median filter[J]. Signal, Image and Video Processing, 2014, 8(1): 71-84. 被引量:1
  • 9Zhang X, Xiong Y. Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter[J]. Signal Processing Letters, IEEE, 2009, 16(4): 295-298. 被引量:1
  • 10Martin D, Fowlkes C, Tal D, et al.The berkeley segmentation dataset and benchmark[DB/OL].2007-06-01[2014-12-09]. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. 被引量:1

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部