期刊文献+

结合主成分分析和局部导数模式的人脸识别方法 被引量:1

Face recognition method combining principal component analysis with local derivative pattern
下载PDF
导出
摘要 针对基于局部模式的人脸识别方法特征维数高、计算复杂度高、识别时间长的问题,提出一种结合主成分分析和局部导数模式的人脸识别方法,并针对如何解决光照、人脸表情等方面的问题提出了改进的编码方法。该方法首先将人脸图像分成很多小的区域,然后在每一个小区域中用改进的编码方法进行编码,并建立该区域的局部导数直方图,然后采用主成分分析法对所有直方图向量进行降维得到特征向量,最后利用最近邻分类器计算相似度。实验表明,这里提出的结合主成分分析和局部导数模式方法无论在识别率还是在运算速度上都优于传统的识别算法。 In order to solve the problems of high feature dimension, high computational complexity and long recognition time caused by the face recognition method based on local pattern, a face recognition method combining principal component analysis and local derivative model is presented in this paper. The improved coding method is introduced to solve the problems of illumination, facial expression and so on. The face image is divided into many small regions, and then each small area is coded by the improved coding method and a LDP histogram of the region is created. The dimension of histogram vectors are reduced by using principal component analysis. Finally, the nearest neighbor classifier is used to calculate the similarity. Experimental re- suits show that the presented method is superior to the traditional method in the recognition rate and the speed.
出处 《现代电子技术》 2014年第18期1-5,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61371201)
关键词 人脸识别 局部导数模式 主成分分析法 相似度计算 face recognition local derivative pattern principal component analysis similarity calculation
  • 相关文献

参考文献13

  • 1WAGNER A, WRIGHT J, GANESH A, et al. Toward a practi-cal face recognition system : Robust alignment and illuminationby sparse representation [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2012, 34(2): 372-386. 被引量:1
  • 2HE R, ZHENG W S,HU B G. Maximum correntropy criterionfor robust face recognition [J], IEEE Transactions on PatternAnalysis and Machine Intelligence, 2011, 33(8) : 1561-1576. 被引量:1
  • 3LIAO S, JAIN A K,LI S Z. Partial face recognition: Align-ment-free approach [J]. IEEE Transactions on Pattern Analysisand Machine, 2013,35(5): 1193-1205. 被引量:1
  • 4JOURNEE Michel, NESTEROV Yurii,SEPULCHRE Rodol-phe, et al. Generalized power method for sparse principal com-ponent analysis [J]. The Journal of Machine Learning Re-search, 2010, 11(3): 517-553. 被引量:1
  • 5CANDES E J, LI X, MA Y, et al. Robust principal compo-nent analysis. [J]. Journal of the Association for Computing Ma-chinery (JACM),2011,58(3); 66-89. 被引量:1
  • 6DING Xing-hao, HE Li-han, CARIN L. Bayesian robust princi-pal component analysis [J]. IEEE Transactions on Image Pro-cessing, 2011, 20(12): 3419-3430. 被引量:1
  • 7FAN Zi-zhu, XU Yong, ZHANG D. Local linear discriminantanalysis framework using sample neighbors [J]. IEEE Transac-tions on Neural Networks, 2011, 22(7) : 1119-1132. 被引量:1
  • 8AHONEN T, HADID A. Face description with local binary pat-terns :Application to face recognition [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2006,28 (12):2037-2041. 被引量:1
  • 9XIE S,SHAN S,CHEN X, et al. Fusing local patterns of ga-bor magnitude and phase for face recognition [J]. IEEE Transac-tions on Image Processing, 2010, 19(5) : 1349-1361. 被引量:1
  • 10BERTIN N, BADEAU R,VINCENT E. Enforcing harmonici-ty and smoothness in Bayesian non-negative matrix factoriza-tion applied to polyphonic music transcription [J]. IEEETransactions on Audio, Speech, and Language Processing,2010,18(3): 538-549. 被引量:1

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部