期刊文献+

耦合Sylvester矩阵方程的梯度迭代算法 被引量:1

A Gradient Iterative Algorithm for Solving the Coupled Sylvester Matrix Equations
下载PDF
导出
摘要 通过推广求解矩阵方程AX=b或AX+XB=C的递推迭代算法和基于递阶辩识原理的思想,给出了求解广义耦合矩阵方程的梯度迭代算法。并证明了迭代算法的收敛性。分析表明,若矩阵方程有唯一解,则对任意的初始值该算法给出的迭代解都能快速的收敛到其精确解。数值实例验证了该算法的有效性。 This paper presents a gradient iterative algorithm for solving the generalized coupled matrix equations based on the hierarchical identification principle and extending of the iterative algorithm for the AX=b or AX+XB=C, and the convergence of this method is also given. The analysis shows that if the matrix equation has an unique solution, then the iterative solutions converge fast to the exact one for any initial value. Giving numerical example demonstrates the effectiveness of the proposed algorithm.
作者 张龙
出处 《价值工程》 2014年第30期318-321,共4页 Value Engineering
基金 云南省自然科学基金(项目编号:2011FZ025)
关键词 递阶辨识 梯度迭代 耦合矩阵 最小二乘 hierarchical identification gradient iterative coupled matrix least squares
  • 相关文献

参考文献10

  • 1DingFeng,Peter X.LiuJie Ding.Iterative solutions of thegeneralized Sylvester matrix equations by using the Hierarchicalidentification principe [J].A-pplied Mathematics and Computation,2008,197:41-50. 被引量:1
  • 2DINGFeng,CHEN Tongwen.Iterative least -squares sol -utions of coupled Sylvester matrix equations [J].Syst-ems & ControlLetters,2005,54(2):95-107. 被引量:1
  • 3ZHANG Hua -min,YIN Hong -cai.A Gradient IterativeAlgorithm for Solving the Coupled Matrix equations. [J].Journal ofAnqing Teachers College,2013(2). 被引量:1
  • 4Guang-Xin Huang,等.Finite iterative algorithms for solvinggeneralized coupled Sylvester systems -Part I:One -sided andgeneralized coupled Sylvester matrix equations over generalizedreflexive solutions [J].A —pplied Mathematical Modeling, 2012 (36):1589-1603. 被引量:1
  • 5陈梅枝,张凯院,尚丽娜.矩阵方程AXB=C的中心对称最小二乘解及其最佳逼近的迭代算法[J].工程数学学报,2008,25(6):1125-1128. 被引量:4
  • 6武见,张凯院.多变量矩阵方程异类约束解的修正共轭梯度法[J].工程数学学报,2012,29(1):112-116. 被引量:13
  • 7Caiqin Song’Guoliang Chen.An efficient algorithm forsolving extended Sylvester -conjugate transpose matrix equations[J].Arab Journal of Mathematical Sci-ences, 2011(17): 115-134. 被引量:1
  • 8LiXie, Jie Ding,Feng Ding.Gradient based iterativesolutions for general linear matrix equations [J].C -omputers andMathematics with Applications, 2009(58): 1441-1448. 被引量:1
  • 9LiXie, et al. Iterative solutions for general coupled matrixequations with real coefficients [J]. American Control Conference,2011. 被引量:1
  • 10MasoudHajarian.A gradient—based iterative algor-ithm forgeneralized coupled Sylvester matrix equat -ions over generalizedcentro -symmetric matrices [J]. Transactions of the institute ofMeasurement and Control, 2013. 被引量:1

二级参考文献10

共引文献15

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部