期刊文献+

基于粒子滤波的行为识别方法 被引量:1

Recognizing Human Actions by Particle Filter
原文传递
导出
摘要 行为识别是图像处理的一个热点问题。一些研究表明在监督学习的框架下,通过提取时空兴趣点(Spatial-temporal interest points)能较好地识别人体的行为。由于兴趣点中包含与人体行为无关的噪声点,为了改进兴趣点的提取,提出了一种基于人体骨架的改进方法。该方法通过粒子滤波(Particle filter)算法改进人体骨架的精度,而改进后的人体骨架,能得到更有效的兴趣点。通过在"Weizmann","KTH"数据集的测试,实验结果表明,该算法不仅能够提高人体行为的识别,而且能够改进人体骨架的精确度。 Action recognition is a hot research topic in image processing area. Some studies have shown that based on supervised learning, spatial-temporal interest points which are extracted from images can recognize human action. Since interest points contain some noises which are not related to human action, a method which is based on human skeleton is presented to refine interest points. This method can improve the precision of human skeleton by particle filter. The refined human skeleton is used to get better interest points. Based on “Weizmann”,“KTH” dataset, experiment results show that the method can improve the precision of human action recognition and human skeleton.
作者 周卫春
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期105-109,共5页 Journal of Chongqing Normal University:Natural Science
关键词 行为识别 时空兴趣点 粒子滤波 姿态估计 支持向量机 human action recognition spatial-temporal interest points particle filter pose estimation support vector machine
  • 相关文献

参考文献16

  • 1Chakraborty B, Holte M B, Moeslund T B, et al, A selec tire spatio-temporal interest point detector for human ac- tion recognition in complex scenes[C]//Proceedings of the IEEE international conference on computer vision. USA: IEEE,2011: 1776-1783. 被引量:1
  • 2Laptev I, Marszalek M, Schmid C, et al. Learning realistic human actions from movies[C]//Proceedings of the IEEE international conference on computer vision. USA: IEEE, 2008 : 1-8. 被引量:1
  • 3Blank M, Irani M, Basri R. Actions as space-time shapes [C]//Proceeding of international conference on computer vision. USA: IEEE,2005 : 1395-1402. 被引量:1
  • 4Ke Y, Sukthankar R, Hebert M, Efficient visual event de tection using volumetric features [C]//IEEE international conference on computer vision. USA : IEEE, :?005 : 166-173. 被引量:1
  • 5Ferrari V, Marin J M, Zisserman A, Progressive search space reduction for human pose estimation[C]//Proceed- ings of the IEEE conference on computer vision and pattern recognition. USA : IEEE. 2008: 1-8. 被引量:1
  • 6Ferrari V, Marin J M,Zisserman A. Pose search: retrieving people using their pose[C]//Proceedings of the IEEE con- ference on computer vision and pattern recognition. USA: IEEE, 2009 : 1-8. 被引量:1
  • 7Yang Y,Ramanan D. Articulated pose estimation with flex ible mixtures-of-part[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. USA: IEEE, 2011 : 1385-1392. 被引量:1
  • 8Dollar P, Rabaud V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal feature[C]//Proceedings of VS- PETS. USA: IEEE, 2005 : 65-72. 被引量:1
  • 9Hess R,Fern A,Discriminatively trained particle filters for complex multi-object tracking [C]//Proceedings of the IEEE conference on computer vision and pattern recogni- tion. USA: IEEE, 2009 : 240-247. 被引量:1
  • 10De Freitas N,Doucet A,Gordon N . An introduction to se- quential Monte Carlo methods[M]. SMC Practice: Spring- er Verlag. 被引量:1

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部