期刊文献+

激光沉积Cr3C2-NiCr金属陶瓷结合区组织的生长机制

Growing Mechanism of Bond Zone in Cermet Cr3C2-NiCr Fabricated by Laser Deposition
原文传递
导出
摘要 为分析原位合成Cr3C2-NiCr金属陶瓷激光沉积层结合区各组织的生成机制,以质量分数为Ni25%-Cr65%-石墨10%能量色散光谱单元素混合粉为原料原位合成激光沉积层,利用光学显微镜、X射线衍射仪、扫描电子显微镜(X射线能谱仪)等手段研究沉积层结合区显微组织特点,结合激光熔池冶金热力学过程,分析结合区显微组织形成机制。结果表明,Cr3C2-NiCr金属陶瓷层主要由Cr3C2、Cr7C3和Ni基固溶体组成,沉积层与45#钢基体的结合区分为共晶区、枝晶区和平面晶区。根据石墨在Cr-Ni熔池中溶解进程,可以得到结合区碳化物的生长过程,即枝晶前沿生长出Ni+M33C6共晶,并包围低熔点合金生长出壳状M7C3碳化物,在熔池中生成Cr3C2-NiCr金属陶瓷。 To analyse the growing mechanism of bond zone in cermet Cr3 C2-NiCr coating, which is made through in situ laser deposition, in situ, laser deposit coatings is compounded with Ni25-Cr65-graphite10 (mass fraction: %) powder mixture. The bond zone microstructures coatings are studied by optical microscope, X-ray diffraction and scan electron microscope (energy dispersive X-ray detector). Following analysis of the laser melt metallurgical thermodynamics, the growing mechanism of the bond zone microstructures is elucidated. The results show that the bond zone of cermet Cr3C2-NiCr coatings constitutes three different zones, eutectic, dendritic and planar. With the study of the process of graphite dissolution in Cr-Ni laser melt, the growth mechanism of carbides in the bonding zone is revealed. Ni+M23C6 eutectic is formed on the front of the dendrites, the shell-shaped M7C3 grows and surrounds the low melting point alloy, and the cermet Cr3 C2-NiCr is generated in laser melt.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第13期291-296,共6页 Acta Optica Sinica
基金 国家自然科学基金(11204071、51171118)
关键词 光学制造 激光沉积 激光熔覆 CR3C2-NICR 金属陶瓷 结合区 生长机制 optical fabrication laser deposition laser clad Cr3 C2-NiCr cermet bond zone growth mechanism
  • 相关文献

参考文献17

  • 1C A Codemard, A Shirakawa, J N Maran, et al.. Power and energy-scaling of cladding-pumped raman fibre lasers sources [C]. SPIE, 2008, 7099: 70990V. 被引量:1
  • 2S Santhanakrishnan, F R Kong, R Kovacevic. An experimentally based thermo-kinetic hardening model for high power direct diode laser cladding [J]. J Mater Process Technol, 2011, 211(7): 1247-1259. 被引量:1
  • 3杨永强.大功率半导体激光熔覆高速钢研究[J].红外与激光工程,2003,32(3):251-254. 被引量:10
  • 4S Santhanakrishnan. Thermo-Kinetic Modeling and Experimental Investigations of Laser Surface Modification Processes by Using High Power Direct Diode Laser [D]. Dallas: Southern Methodist University, 2010. 被引量:1
  • 5W C Tseng, J N Aoh. Simulation study on laser cladding on preplaced powder layer with atailored laser heat source [J]. Opt Laser Technol, 2013, 48(9): 141-152. 被引量:1
  • 6M Alimardani, E Toyserkani, J P Huissoon. A 3D dynamic numerical approach for temperature and thermal stress. distributions in multilayer laser solid freeform fabrication process [J]. Opt Laser Eng, 2007, 45(12): 1115-1130. 被引量:1
  • 7V Fallah, M Alimardani, S Corbin, et al.. Impact of localized surface preheating on the microstructure and crack formation in laser direct deposition of Stellite 1 on AISI 4340 steel [J]. Appl Surf Sci, 2010, 257(5): 1716-1723. 被引量:1
  • 8张江涛..颗粒增强金属基复合材料动态力学性能的实验研究与数值模拟[D].武汉理工大学,2007:
  • 9S Sun, Y Durandet, M Brandt. Parametric investigation of pulsed NdYAG laser cladding of stellite 6 on stainless steel [J]. Surf Coat Tech, 2005, 194(2): 225-231. 被引量:1
  • 10C K Sha, H L Tsai. Hardfacing characteristics of S42000 stainless steel powder with added silicon nitride using a CO2 laser [J]. Mater Charact, 2004, 52(4): 341-348. 被引量:1

二级参考文献13

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部