期刊文献+

改进的小波阈值语音去噪算法 被引量:8

Speech denoising algorithm based on improved wavelet thresholding
下载PDF
导出
摘要 小波阈值去噪算法简单,计算量小,但是硬阈值函数的不连续性会造成信号的振荡,软阈值函数太过光滑会造成信号高频信息丢失.基于两种阈值函数存在的缺点,在小波变换理论基础上研究了一种改进的小波阈值语音去噪算法,提出了一种改进的阈值函数,同时也提出了修正阈值的修正系数.最后通过MATLAB仿真结果证明该方法在一定程度上可以去除噪声,减少信号的振荡,保留原信号的特征尖峰点信息,降低了信号的失真,更好地估计原始信号,明显改善了语音质量. The wavelet threshold denoising algorithm is simple and its computation is less. However, the discon- tinuousness of a hard threshold function will cause signal oscillations and a soft threshold function that is too smooth will cause the information loss of high-frequency signal. Based on the disadvantages of two threshold functions,a speech denoising algorithm is developed based on wavelet thresholding,and an improved threshol- ding function and correction coefficient of revise threshold are put forward. Finally,the Matlab simulation resuits prove that this method can remove the noise to some extent, reduce the oscillation and distortion of the signals, and retain the characteristics peak information of the original signal. It estimates the original signal very well and improves the speech quality obviously.
作者 赵鸿图 刘云
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2014年第5期647-650,共4页 Journal of Henan Polytechnic University(Natural Science)
基金 国家创新方法工作专项项目(2010IM020500)
关键词 小波阈值去噪 小波变换 阈值函数 wavelet thresholding denoising wavelet transform thresholding function
  • 相关文献

参考文献14

二级参考文献102

共引文献252

同被引文献45

  • 1王水平,唐振民,陈北京,蒋晔.复杂环境下语音增强的复平面谱减法[J].南京理工大学学报,2013,37(6):857-862. 被引量:6
  • 2向红艳,刘伟,朱顺应.基于偏差分析的交通事件自动检测算法[J].中南公路工程,2007,32(2):142-144. 被引量:4
  • 3张德丰.MATLAB小波分析[M].2版.北京:机械工业出版社,2011:309-314. 被引量:5
  • 4董胡,钱盛友.基于小波变换的语音增强方法研究[J].计算机工程与应用,2007,43(31):58-60. 被引量:10
  • 5LI Ruwei, BAO Changchun, XIA Bingyin,et al. Speech en- hancement using the combination of adaptive wavelet thresh- old and spectral subtraction based on wavelet packet decom- position[ C]//Proc. IEEE 11 th International Conference on Signal Processing. Beijing : IEEE Press, 2012 ( 1 ) : 481 - 484. 被引量:1
  • 6MALLAT S. Muhrieresolution approximations and wavelet orthonormal bases of L2 (R) [ J] . Trans, Amer. Math. Soe. , 1989(9) : 69 -87. 被引量:1
  • 7ISLAM M T,SHAHNAZ C,FATTAH S A.Speech enhancement based on a modified spectral subtraction method[J].IEEE.International Midwest Symposium.2014,8:1085-1088. 被引量:1
  • 8RAO C V R,MURTHY M B R,RAO K S.Speech enhancement using perceptual Wiener filter combined with unvoiced speech-A new Scheme[J].IEEE.Intelligent Computational Systems.2011,9,688-691. 被引量:1
  • 9LOIZOU PC,KIM G.Reasons why current speech-enhancement algorithms do not impro-ve speech intelligibility and suggested solutions[J].IEEE.Trans.Audio Speech Lang.Pro-cess.,2011,19(1),47-56. 被引量:1
  • 10JIN QIBING,KHURSHEED S.A Wavelet Theory about Online Wavelets Denoising Based On Moving Window and Principal Component Analysis(PCA)[J].IEEE.Wavelet Analysis and Pattern Recognition(ICWAPR),2013,10(7):56-61. 被引量:1

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部