期刊文献+

利用GPU的R树细粒度并行STR方法批量构建 被引量:3

GPU-Based Parallel Bulk Loading R-trees Using STR Method on Fine-Grained Model
原文传递
导出
摘要 大数据时代,需要对海量空间数据更快速地建立高效索引,使用递归排序网格(STR)方法构建的R树具有优秀的查询性能,但构建效率不高。本文利用基于计算机图形处理器(GPU)的通用计算具有细粒度可并行性的特点,提出了一种基于STR算法的R树GPU并行构建算法,使用线性数据结构存储R树,并且用整体排序代替分段排序,细化算法的并行粒度。实验结果表明,同CPU算法相比,本文算法的加速比最高可达27倍,并且呈现出随着数据量增大而变大的趋势。本文算法充分利用GPU的并行处理能力,高效构建了性能优越的R树空间索引。 In the era of big data, efficient spatial indexes need to be established quickly for massive spatial data. The R-tree spatial index built by the sort tile recursive (STR) technique has excellent query performance but low efficiency when building. We propose an R-tree bulk loading algorithm using a STR technique based on general purpose computing on a GPU, A linear array structure is used to store an R-tree and an overall sorting algorithm is used instead of segmented sorting. Experiments show that our proposed algorithm achieves up to a 27 speedup. Our experiments also indicate that the speedup increases as the data becomes larger. We use a query algorithm on the GPU to verify the R- tree bulk loading algorithm; finding that it has good query performance. Our algorithm takes advantage of the parallel processing capacity of the GPU and achieves high efficiency which shows that the technology of GPU computing has broad applicability in the spatial indexing field.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第9期1068-1073,共6页 Geomatics and Information Science of Wuhan University
基金 国家科技支撑计划资助项目(2012BAH35B000) 国家科技基础条件平台建设项目 江苏高校优势学科建设工程资助项目~~
关键词 R树 GPU 批量构建 细粒度并行 空间索引 R-tree GPU bulk lading fine-grained parallel spatial index
  • 相关文献

参考文献17

  • 1Papadopoulos A, Manolopoulos Y. Parallel Bulk- loading of Spatial Data[J]. Parallel Computing, 2003, 29(10): 1 419 1 444. 被引量:1
  • 2Guttman A. R-trees= A Aynamic Index Structure for Spatial Searching[C]. ACM SIGMOD, Boston, MA, 1984. 被引量:1
  • 3Sellis T, Roussopoulos N, Faloutsos C. The R+- tree.. A Dynamic Index for Multi-dimensional Ob- iects[C]. The 13th VLDB, Brighton, England, 1987. 被引量:1
  • 4Bechmann N, Kriegel H P, Schneider R,et al. The R -tree= An Efficient and Robust Access Method for Points and Rectangles[C]. SIGM OD, Atlantic City, New Jersey, 1990. 被引量:1
  • 5Roussopoulos N, Leifker D. Direct Spatial Search on Pictorial Databases Using Packed R-trees[C]. ACM SIGMOD,Austin, TX, 1985. 被引量:1
  • 6刘金硕,刘天晓,吴慧,曾秋梅,任梦菲,顾宜淳.从图形处理器到基于GPU的通用计算[J].武汉大学学报(理学版),2013,59(2):198-206. 被引量:7
  • 7Simion B, Ray S, Brown A D. Speeding up Spatial Database Query Execution Using GPUs[J]. Proce- dia Computer Science, 2012, (9) .. 1 870-1 879. 被引量:1
  • 8Kim J, Hong S, Nam B. A Performance Study of Traversing Spatial Indexing Structures in Parallel on GPU[C]. IEEE 14th International Conference on High Performance Computing and Communications. Liverpool, United Kingdom, 2012. 被引量:1
  • 9Yang K, He B, Fang R, et al. In-memory Grid Files on Graphics Processors[C]. The 3rd Interna- tional Workshop on Data management on New Hardware, ACM, Beijing, China, 2007. 被引量:1
  • 10Lijuan I., Wong M D F, Leong L. Parallel Imple- mentation of R-trees on the GPU[C]. The 17th A- sia and South Pacific Design Automation Confer- ence, San Francisco, USA, 2012. 被引量:1

二级参考文献142

  • 1刘钦,佟小龙.GPU/CPU协同并行计算(CPPC)在地震勘探资料处理中的应用[R].北京:北京吉星吉达公司,2008. 被引量:2
  • 2葛震.GPU加速PQMRCGSTAB算法研究[D].长沙:国防科学技术大学,2009. 被引量:1
  • 3Papadopoulos A.N., Manolopoulos Y.. Performance of nearest neighbor queries in R-trees. In: Proceedings of ICDT, Delphi, Greece, 1997, 394~408. 被引量:1
  • 4An N., Yang Zhen-Yu, Sivasubramaniam A.. Selectivity estimation for spatial joins. In: Proceedings of ICDE, Heidelberg, Germany, 2001, 368~375. 被引量:1
  • 5Sun Chengyu, Agrawal D., Abbadi A.E.. Selectivity estimation for spatial joins with geometric selections. In: Proceedings of EDBT, Prague, Czech Republic, 2002, 609~626. 被引量:1
  • 6Kamel I., Faloutsos C.. Parallel R-trees. In: Proceedings of SIGMOD, San Diego, California, 1992, 195~204. 被引量:1
  • 7Papadopoulos A., Manolopoulos Y.. Similarity query processing using disk arrays. In: Proceedings of SIGMOD, Seattle, Washington, USA, 1998, 225~236. 被引量:1
  • 8Koudas N., Faloutsos C., Kamel I.. Declustering spatial databases on a multi-computer architecture. In: Proceedings of EDBT, Avignon, France, 1996, 592~614. 被引量:1
  • 9Brinkhoff T., Kriegel Hans-Peter, Seeger B.. Parallel processing of spatial joins using R-trees. In: Proceedings of ICDE, New Orleans, Louisiana, 1996, 258~265. 被引量:1
  • 10Papadopoulos A., Manolopoulos Y.. Parallel processing of nearest neighbor queries in declustered spatial data. In: Proceedings of ACM-GIS, Rockville, MD, 1996, 35~43. 被引量:1

共引文献100

同被引文献35

  • 1秦承志,李宝林,朱阿兴,杨琳,裴韬,周成虎.水流分配策略随下坡坡度变化的多流向算法[J].水科学进展,2006,17(4):450-456. 被引量:24
  • 2O'Callaghan J F, Mark D M.The Extraction of Drainage Networks from Digital Elevation Data[J].Computer Vision, Graphics, and Image Processing, 1984, 28(3):323-344. 被引量:1
  • 3Fairfield J, Leymarie P.Drainage Networks from Grid Digital Elevation Models[J].Water Resources Research, 1991, 27(5):709-717. 被引量:1
  • 4Lea N L. An Aspect Driven Kinematic Routing Algorithm in Overland Flow:Hydraulics and Erosion Mechanics[M]. NewYork:Chapman &Hall,1992. 被引量:1
  • 5Moore I D, Grayson R B,Ladson A R.Digital Terrain Modeling: A Review of Hydrological Geomorphological and Blological Application[J].Hydrological Processes, 1991, 5(1):3-30. 被引量:1
  • 6Freeman T G.Calculating Catchment Area with Divergent Flow Based on a Regular Grid[J].Computers & Geosciences, 1991, 17(3):413-422. 被引量:1
  • 7Rueda A, Noguera J M, Martinez-cruz C. A Flooding Algorithm for Extracting Drainage Networks from Unprocessed Digital Elevation Models[J].Computers & Geosciences, 2013, 59(10):116-123. 被引量:1
  • 8Quinn P, Beven K, Chevalier P, et al. The Prediction of Hillslope Flow Paths for Distributed Hydrological Modeling Using Digital Terrain Models[J]. Hydrological Processes, 1991, 5: 59- 79. 被引量:1
  • 9Ortega L, Rueda A.Parallel Drainage Network Computation on CUDA[J].Computers &Geosciences, 2010, 36(2):171-178. 被引量:1
  • 10Qin C Z,Zhan L.Parallelizing Flow-accumulation Calculations on Graphics Processing Units—from Iterative DEM Preprocessing Algorithm to Recursive Multiple-flow-direction Algorithm[J].Computers & Geosciences, 2012, 43(6):7-16. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部