期刊文献+

网络最大流的自适应求解算法——SAPR算法 被引量:4

Self-adaptive algorithm for network maximum flow problem: SAPR algorithm
下载PDF
导出
摘要 为提升对大规模不同拓扑结构网络的求解速度,通过评估基本操作的执行效率、动态调整活跃顶点的选择方式及盈余流的推进方式,提出了一种可高效求解多类拓扑网络的自适应预流推进算法——SAPR(self-adaptive push-relabel)算法。在The First DIMACS implementation Challenge提供的七类不同拓扑结构网络上,对SAPR算法及四种适用于特定拓扑网络的算法进行了对比实验,结果表明:SAPR算法在一半的数据上能持平高效的H_PRF算法,而另一半能超越H_PRF算法。SAPR算法的高效性和强稳定性解决了传统算法在多类拓扑网络中不能都取得高效率的问题。 In order to improve the calculating speed for different topological networks, this paper proposed an adaptive algo- rithm, named SAPR algorithm, by the way of changing the choices of active nodes and the treatment of excess flow dynamical- ly. It compared with four typical algorithms which were suitable for special topological networks, it tested SAPR algorithm on seven kinds of network provided by the first dimacs implementation challenge. The experimental results demonstrate that the SAPR algorithm performances well for all tested networks with good applicability, and better than H_PRF algorithm on half of networks.
出处 《计算机应用研究》 CSCD 北大核心 2014年第10期2969-2973,共5页 Application Research of Computers
基金 国家"863"计划资助项目(2011AA120302)
关键词 最大流 自适应 预流推进 网络分析 H_PRF算法 动态 maximum flow self-adaptive push-relabel network analysis H_PRF algorithm dynamic
  • 相关文献

参考文献20

  • 1AHUJA R K, MAGNANYI T L, ORLIN J B.Network flows:theory, algorithms and applications[M].New Jersey:Prentice-Hall,1993:166-288. 被引量:1
  • 2BOGLIOLO A, DELPRIORI S.Self-adapting maximum flow routing for autonomous wireless sensor networks[J].Cluster Comput,2011,14(11):1-14. 被引量:1
  • 3厍向阳.点和边有容量约束的网络最小费用最大流算法[J].计算机应用研究,2010,27(8):3112-3114. 被引量:8
  • 4JAMES B O.A polynomial time primal network simplex algorithm for minimum cost flows[J].Mathematical Programming,1997,78(2):109-129. 被引量:1
  • 5KUMAR K.Optimization of minimum cost network flows with heuristic algorithms[J].International Journal of Information and Education Technology,2012,2(1):33-35. 被引量:1
  • 6FONOBEROVA M A F, LOZOVANU D D L.The maximum flow in dynamic networks[J].Computer Science Journal of Moldova,2004,3(36):387-396. 被引量:1
  • 7EKKEHARD K, MARTIN S.Flows over time with load-dependent transit times[J].SIAM Journal on Optimization,2005,15(4):1185-1202. 被引量:1
  • 8张宪超,陈国良,万颖瑜.网络最大流问题研究进展[J].计算机研究与发展,2003,40(9):1281-1292. 被引量:52
  • 9凌永发,徐宗本.一种求解网络最大流问题的算法[J].计算机科学,2006,33(6):39-41. 被引量:8
  • 10FORD L R, FULKERSON D R.Maximum flow through a network[J].Canadian Journal of Mathematics,1956,8(5):399-404. 被引量:1

二级参考文献139

  • 1张宪超,江贺,陈国良.节点和边都有容量的有向平面网络中的最小截和最大流[J].计算机学报,2006,29(4):544-551. 被引量:16
  • 2AHUJIA R K,MAGNATI T L,ORLIN J B.Network flows:theory,algorithms and applications[M].New Jersey:Rentice Hall,1993. 被引量:1
  • 3R K Ahuja, J B Orlin. A fast and simple algorithm for the maximum flow problem. Oper Res, 1989, 37(5) : 748~759. 被引量:1
  • 4R K Ahuja, J B Orlin, R E Tarjan. Improved time bounds for the maximum flow problem. SIAM J Computing, 1989, 18(5): 939-954. 被引量:1
  • 5N Alon. Generating pseudo-random permutations and maximum flow algorithms. Information Processing Letters, 1990, 35 ( 4 ) :201-203. 被引量:1
  • 6V King, S Rao, R Tarjan. A faster deterministic maximum flow algorithm. J Algorithms, 1994, 17(3): 447~474. 被引量:1
  • 7J Cheriyan, T Hagerup, K Mehlhom. An O( n^3)-time maximum flow algorithm. SIAMJ Computing, 1996, 25(6): 1144~1170. 被引量:1
  • 8H N Gabow. Scaling algorithms for network problems. J Comput System Sci, 1985, 31(2): 148-168. 被引量:1
  • 9R K Ahuja, J B Orlin. Distance-directed augmenting path algorithms for the maximum flow problem. Naval Research Logisties Quarterlv. 1991. 38(2): 413~430. 被引量:1
  • 10V M Malhotra, M P Kumar, S N Mahesh-wari. An O ( | V^3| )algorithm for finding maximum flows in networks. Information Processing Letters, 1978, 7(6) : 277~278. 被引量:1

共引文献63

同被引文献20

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部