摘要
基于微分几何推导出了不等极孔椭球类容器纤维缠绕的非测地线稳定缠绕方程,并根据薄膜理论、层合板理论、蔡-吴失效准则得到了赤道处纤维层的最小厚度1.281 7 mm,计算出的纤维方向的应力小于纤维的极限强度3.92 GPa。发现纤维缠绕椭球容器的应力状态是赤道处最先发生破坏,且会出现局部失效现象。以缠绕层最小质量M为目标函数,蔡-吴失效准则为约束条件,在给定内压5 MPa的情况下,得到了优化后的容器质量为34.072 kg。相比于等极孔的容器而言,非测地线缠绕具有高度非线性、不稳定性及精度难以控制等问题。
Mechanical property of ellipsoid pressure vessels with unequal polar openings is studied in this paper.The steady formulas for filament on a surface of revolution are derived from differential geometry.Based on the membrane theory,laminate theory and Tsai-Wu failure criterion,the thickness of the equator is 1.281 7 mm,the stress value of the fiber direction is less than the fiber strength 3.92 GPa.The stress state of the filament wound ellipsoidal vessel is that the damage happens first in equator,and local failure phenomenon is happened.To minimum winding layers weight M as the objective function,Tsai-Wu failure criterion as the constraint condition,under the condition of 5 MPa internal pressure,we achieve the optimized weight is 34.072 kg.Compared to ellipsoid pressure vessels with equal polar openings,it has highly non-linear,instability and high precision.
出处
《宇航材料工艺》
CAS
CSCD
北大核心
2014年第4期25-30,共6页
Aerospace Materials & Technology
基金
国家自然科学基金(1130216)
陕西省自然科学基础研究计划(2013JQ6018)
关键词
不等极孔
纤维缠绕
非测地线
优化
Unequal polar openings
Filament winding
Non-geodesic
Optimization