期刊文献+

Modeling and qualitative analysis of diabetes therapies with state feedback control 被引量:2

Modeling and qualitative analysis of diabetes therapies with state feedback control
原文传递
导出
摘要 For the therapies of diabetes mellitus, a uovel mathematical model with two state impulses: impulsive injection of insulin and impulsive injection of glucagon, is proposed. To avoid hypoglycemia and hyperglycemia, the injections of insulin and glucagon are determined by closely monitoring the plasma glucose level of the patients. By using differential equation geometry theory, the existence of periodic solution and the attrac- tion region of the system have been obtained, which ensures that injections in such an automated way can keep the blood glucose concentration under control. The simula- tion results verify that the better insulin injection strategy in closed-loop control is a larger dose but longer interval rather than a smaller dose but shorter interval. Besides, our numerical analysis reveals that medicine studies and practice that slow down the insulin degradation are helpful for the plasma glucose control. Our findings can provide significant guidance in both design of artificial pancreas and clinical treatment.
出处 《International Journal of Biomathematics》 2014年第4期1-21,共21页 生物数学学报(英文版)
关键词 Glucose-insulin system state impulse periodic solution successor function. 状态反馈控制 临床治疗 糖尿病 胰高血糖素 建模 时间间隔 胰岛素 注射用
  • 相关文献

参考文献1

二级参考文献17

  • 1D. D. Bainov and V. C. Covachev, Impulsive Differential Equations with a Small Parameter (World Scientific, Singapore, 1994). 被引量:1
  • 2D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Prop- erties of the Solutions (World Scientific, Singapore, 1993). 被引量:1
  • 3E. M. Bonotto, Flows of characteristic 0+ in impulsive semidynamicM systems, J. Math. Anal. Appl. 332 (2007) 81-96. 被引量:1
  • 4L. Chen, Pest control and geometric theory of semi-dynamical systems, or. Beihua Univ. (Natural Sci.) 12 (2011) 1-9. 被引量:1
  • 5M. A. Han, S. C. Hu and X. B. Liu, On the stability of double homoclinic and heteroclinic cycles, Nonlinear Anal. 53 (2003) 701- 713. 被引量:1
  • 6G. Jiang, Q. Lu and L. Qian, Complex dynamics of a Holling type II prey-predator system with state feedback control, Chaos, Solitons, Fractals 31 (2007) 448-461. 被引量:1
  • 7V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differ- ential Equations (World Scientific, Singapore, 1989). 被引量:1
  • 8L. Nie, J. Peng, Z. Teng and L. Hu, Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state-dependent impulsive effects, J. Com- put. Appl. Math. 224 (2009) 544-555. 被引量:1
  • 9P. S. Simenov and D. D. Buinov, Orbital stability of the periodic solutions of autonomous systems with impulse effect, Int. J. Syst. Sci. 19 (1988) 2561-2585. 被引量:1
  • 10L. Sun and L. Chen, Permanence and complexity of the eco-epidemiological model with impulsive perturbation, Int. J. Biomath. 1 (2008) 121-132. 被引量:1

共引文献2

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部