期刊文献+

交通流量VNNTF神经网络模型多步预测研究 被引量:13

Research on the Multi-step Prediction of Volterra Neural Network for Traffic Flow
下载PDF
导出
摘要 研究了VNNTF神经网络(Volterra neural network traffic flow model,VNNTF)交通流量混沌时间序列多步预测问题.通过分析比较交通流量混沌时间序列相空间重构的嵌入维数和Volterra离散模型之间的关系,给出了确定交通流量Volterra级数模型截断阶数和截断项数的方法,并在此基础上建立了VNNTF神经网络交通流量时间序列模型;设计了交通流量Volterra神经网络的快速学习算法;最后,利用交通流量混沌时间序列对VNNTF网络模型,Volterra预测滤波器和BP网络进行了多步预测实验,比较了多步预测结果的仿真图、绝对误差的柱状图以及归一化后的方均根;实验结果表明VNNTF神经网络的多步预测性能明显优于Volterra预测滤波器和BP神经网络. This paper studies multi-step prediction of traffic flow chaotic time series based on Volterra neural network traffic flow model (VNNTF). Firstly, by analyzing the relationship between the embedding dimension of phase space reconstruction of traffic flow chaotic time series and Volterra discrete model, we give the method to determine the truncation order and items of Volterra series. Secondly, based on the first step, we build the VNNTF neural networks model of chaos time series and design the fast learning algorithm of Volterra neural network traffic flow. Thirdly, we describe multi-step prediction experiments based on chaotic time series VNNTF traffic network model, Volterra prediction filter and BP networks. Finally, we compare the multi-step prediction simulation diagram with the absolute error histogram and normalized root mean square are compared. The experimental results show that the VNNTF neural network multi-step prediction performance is significantly better than those of the Volterra filter and BP neural network.
出处 《自动化学报》 EI CSCD 北大核心 2014年第9期2066-2072,共7页 Acta Automatica Sinica
基金 国家杰出青年科学基金(50925727) 教育部科学技术研究重大项目(313018) 安徽省高校自然科学基金重点项目(KJ2012A219) 中国博士后科学基金(2013M541823)资助~~
关键词 相空间重构 泛函级数 多步预测 VNN神经网络 算法 混沌 Phase space reconstruction, functional series, multi-step prediction, Volterra neural network (VNN) neural networks, algorithm, chaos
  • 相关文献

参考文献21

  • 1Xiao Z L, Jing X J, Cheng L. Parameterized convergence bounds for Volterra series expansion of NARX models. IEEE Transactions on Signal Processing, 2013, 61(20): 5026-5038. 被引量:1
  • 2朱雄泳,周杰,谭洪舟.一种消除LCD运动图像去模糊模型极点的方法[J].自动化学报,2012,38(5):759-768. 被引量:2
  • 3Asyali M, Alc M. Obtaining Volterra kernels from neural networks. In: Proceedings of World Congress on Medical Physics and Biomedical Engineering 2006, IFMBE Proceedings. Berlin: Springer Berlin Heidelberg, 2007. 11-15. 被引量:1
  • 4Silveira D D, Gilabert P L, dos Santos A B, Gadringer M. Analysis of variations of volterra series models for RF power amplifiers. IEEE Microwave and Wireless Components Letters, 2013, 23(8): 442-444. 被引量:1
  • 5Ghasemi M, Tavassoli K M, Babolian E. Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method. Applied Mathematics and Computation, 2007, 188(1): 446-449. 被引量:1
  • 6Meng X Z, Chen L S. Permanence and global stability in an impulsive Lotka-Volterra n-species competitive system with both discrete delays and continuous delays. International Journal of Biomathematics, 2008, 1(2): 179-196. 被引量:1
  • 7Despotovic V, Goertz N, Peric Z. Nonlinear long-term prediction of speech based on truncated Volterra series. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(3): 1069-1073. 被引量:1
  • 8Chen F D. Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems. Applied Mathematics and Computation, 2006, 182(1): 3-12. 被引量:1
  • 9Kobayakawa S, Yokoi H. Evaluation of prediction capability of Non-recursion type 2nd-order Volterra neuron network for electrocardiogram. In: Proceedings of the 15th International Conference on Neuro-Information Processing of the Asia Pacific Neural Network Assembly, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, 5507: 679-686. 被引量:1
  • 10康玲,王乘,姜铁兵.Volterra神经网络水文模型及应用研究[J].水力发电学报,2006,25(5):22-26. 被引量:9

二级参考文献88

共引文献63

同被引文献133

引证文献13

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部