期刊文献+

足踝生物力学动态仿真实验台的多轴运动和力协同控制系统 被引量:2

A multi-axis motion and force control system for dynamic foot biomechanical simulator
下载PDF
导出
摘要 目的研究足踝生物力学动态仿真实验台的控制问题,提出一套完整的多轴控制算法使实验台在模拟自由度、时间和精度、负荷重量、调试效率等指标上与国际同行相比具有竞争力。方法设计人体足踝步态实验台,通过5个伺服电机驱动的机构模拟步态的运动过程(5个自由度)。基于对整个步态过程中力加载的科学分析和合理简化,在Matlab中对此多自由度力加载的过程进行建模。提出运用PID迭代学习算法来控制力,并在Simulink中进行仿真分析。基于仿真的参数,在实际搭建的系统上验证该算法的有效性与可靠性。结果经过4~5次的迭代学习,实验台可以在5s时间内完成1个支撑相的模拟,3个方向的足底反力(Fz、Fy、Fx)都具有重复性和可控性,在50%的人体体重下Fz和Fy输出曲线与目标曲线的均方根误差分别收敛到20N和8N,小于模拟负载的10%。结论迭代学习控制方法可使足踝步态模拟实验台具有较强的力学模拟能力,提高了实验台的智能性,为后续进一步提高模拟速度和精度奠定良好的基础,其研制对尸体足踝生物力学实验具有重要意义。 Objective To study the control problem in dynamic foot biomechanical simulator and propose a com- plete multi-axis control algorithm which could be more competitive than that of current gait simulators in aspects as simulations in degree-of-freedom ( DOF), velocity, precision, weight-bearing and trial efficiency. Methods A novel custom-made foot and ankle biomechanical simulator was developed to simulate both motion and force characteristics in a stance phase with .5 DOF. A model of the simulator was built in Matlab based on gait analysis and reasonable simplification. Iteration learning control (ILC) was proposed to control multi-axis forces and was verified in Simulink. Finally, the control strategy was validated in the simulation platform with a prosthetic foot. Results The novel simulator could complete the motion and force loading process within 5 seconds in one stance after 4-5 iterations. All 3D ground reaction forces ( F,, Fy and Fx) had high verified repeatability. The tracking curves of Fz and Fy with 50% of real body weight could converge to the target ones with root mean square (RMS) error of 20 N and 8 N using ILC, respectively, which was smaller than 10% of simulated loads. Conclusions The proposed control strategy greatly improved intelligence of the simulator and provided a good foundation to further improve the simulation speed and accuracy. The development of the simulator is of great significance to the cada- veric experiments on foot and ankle biomechanics.
出处 《医用生物力学》 EI CAS CSCD 北大核心 2014年第4期355-362,共8页 Journal of Medical Biomechanics
基金 国家自然科学基金资助项目(81071234)
关键词 步态模拟器 力控制 迭代学习 生物力学 Gait simulator Force control Iterative learning control(ILC) Biomechanics
  • 相关文献

参考文献12

  • 1孟昭莉,宋航,元文学.男性青年行走起动步态的实验研究[J].医用生物力学,2010,25(2):124-128. 被引量:6
  • 2黄萌,张明,梁锦纶.利用步态分析研究楔形鞋垫对膝关节载荷的影响[J].医用生物力学,2011,26(4):294-298. 被引量:9
  • 3Kim K, Kitaoka HB, Luo Z, et al. In vitro simulation of the stance phase in human gait [J]. J Musculoskeletal Res, 2001, 5(2) : 113-122. 被引量:1
  • 4Nester C J, kiu AM, Ward E, et al. In vitro study of foot ki- nematics using a dynamic walking cadaver model [J]. J Biomech, 2007, 40(9) : 1927-1937. 被引量:1
  • 5Okita N, Meyers SA, Challis JH, et al. An objective evalu- ation of a segmented foot model [J]. Gait Posture, 2009, 30(1) : 27-34. 被引量:1
  • 6Hurschler C, Emmerich J, WQIker N. In vitro simulation of stance phase gait-Part I: Model verification [ J]. Foot An- kle Int, 2003, 24(8) : 614-622. 被引量:1
  • 7Wulker N, Hurschler C, Emmerich J. In vitro simulation of stance phase gait-Part II : Simulated anterior tibial tendon dysfunction and potential compensation [ J ]. Foot Ankle Int, 2003, 24(8) : 623-629. 被引量:1
  • 8Kirane YM, Michelson JD, Sharkey NA. Evidence of iso- metric function of the flexor hallucis Iongus muscle in nor- mal gait [J]. J Biomech, 2008, 41(9): ]9]9-]928. 被引量:1
  • 9Aubin P, Cowley M, Ledoux W. Gait simulation via a 6-DOF parallel robot with iterative learning control [J]. IEEE Trans Biomed Eng, 2008, 55(3) : 1237-1240. 被引量:1
  • 10Aubin PM, Whittaker E, Ledoux WR. A robotic cadaveric gait simulator with fuzzy logic vertical ground reaction force control[J]. IEEE Trans Robotics, 2012, 28 (1) : 246-255. 被引量:1

二级参考文献22

  • 1Woo J, Lau E, Lee P, et al. Impact of osteoarthritis on quality of life in a Hong Kong Chinese population [ J ]. J Rheumatol, 2004, 31(12): 2433-2438. 被引量:1
  • 2Symmons D, Mathers C, Pfleger B. Global burden of oste- oarthritis in the year 2000 [ R]. World Health Organization 2003, 2003. 被引量:1
  • 3Woolf AD, Pfleger B. Burden of major musculoskeletal conditions [J]. Bull WHO, 2003, 81 (9) : 646-656. 被引量:1
  • 4Leung YF, Wai YL, Leung YC. Patella alta in southern China. A new method of measurement [J]. Int Orthop, 1996, 20(5) : 305-310. 被引量:1
  • 5Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis [J]. Bone, 2006, 38(2) : 234-243. 被引量:1
  • 6Kerfigan D, Lelas JL, Goggins J, et al. Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis[ J ]. Arch Phys Med Rehab, 2002, 83 (7) : 889-893. 被引量:1
  • 7Sasaki T, Yasuda K. Clinical evaluation of the treatment of osteoarthritic knees using a newly designed wedged insole [J]. Clin Orthop Relat Res, 1987, 221: 181-187. 被引量:1
  • 8Shimada S, Kobayashi S, Wada M, et al. Effects of dis- ease severity on response to lateral wedged shoe insole for medial compartment knee osteoarthritis [ J ]. Arch Physl Med Rehab, 2006, 87 ( 11 ) : 1436-1441. 被引量:1
  • 9Kim CM, Eng JJ. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: Relationship to walking speed [ J ]. Gait Posture, 2004, 20 (2) :140- 146. 被引量:1
  • 10Crenshaw S J, Polio FE, Calton EF. Effects of lateral- wedged insoles on kinetics at the knee [ J ]. Clin Orthop Relat Res, 2000, 375: 185-192. 被引量:1

共引文献12

同被引文献26

  • 1Stephen AB,Melissa MG,Scott TB,et al.Modular stem- fixed bearing total ankle replacement:Prospective results of 23 consecutive cases with 3 year follow-up[J].J Foot Ankle Surg,2014,53(6):692-699. 被引量:1
  • 2Wood PL,Prem H,Sutton C.Total ankle replacement: Medium-term results in 200 Scandinavian total ankle replacements[J].J Bone Joint Surg Br,2008,90(5):605-609. 被引量:1
  • 3Brunner S,Barg A,Knupp M,et ai The Scandinavian total ankle replacement:Long-term,eleven to fifteen-year,survivorship analysis of the prosthesis in seventy-two con- secutive patients[J].J Bone Joint Surg Am,2013,95(8):711-718. 被引量:1
  • 4Roukis TS.Incidence of revision after primary implantation of the Agility total ankle replacement system:A systematic review[J].J Foot Ankle Surg,2012,51(2):198-204. 被引量:1
  • 5Mkandawire C,Ledoux WR,Sangeorzan BJ,et al.Foot and ankle ligament morphometry[J].J Rehabil Res,2005,42(6):809-820. 被引量:1
  • 6Cheung JT,Zhang M,Leung AK,et al.Three-dimensional finite element analysis of the foot during standing-A material sensitivity study[J].J Biomech,2005,38(5):1045-1054. 被引量:1
  • 7Guiotto A,Sawacha Z,Guarneri G,et al.3D finite ele- ment model of the diabetic neuropathic foot:A gait analysis driven approach[J].J Biomech,2014,47(12):3064-3071. 被引量:1
  • 8Simkin A.Structural analysis of the human foot in standing posture[D].Tel Aviv:Tel Aviv University,1982. 被引量:1
  • 9日Iis S,DeOrio JK.The INBONE total ankle replacement[J].Oper Tech Orthop,2010,20(3):201-210. 被引量:1
  • 10王建平.膝关节力学建模与屈曲运动生物力学特性研究[D].上海:上海交通大学博士学位论文,2009. 被引量:1

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部