期刊文献+

自动站数据质量控制中关联规则挖掘的应用 被引量:9

Application of Association Rule Mining in AWS Data Quality Control System
下载PDF
导出
摘要 为进一步提高自动气象站数据的业务可用性,提出了基于关联规则挖掘技术的自动气象站数据质量控制算法,以相对湿度与风向、风速观测要素变化间的关联关系为例,总结了自动气象站相关观测项目间可能存在的关联规则,进而指导建立适合不同地域、不同气候特征的专家知识规则库,用以完善自动气象站数据质量控制系统,为天气预报和气象服务提供更加精准的气象观测数据。文章还对关联规则专家知识库的可靠性进行了验证,具备了一定的实用价值。 In order to increase the availability of automatic weather station data, a data quality control algorithm for automatic weather stations based on association rules mining is proposed. Taking the relationship between relative humidity and wind direction and speed changes as the example, some possible association rules among observation items are summarized to guide the installation of the expert knowledge rule base that is suit for different areas and climate characteristics. The goal is to perfect the data quality control system for automatic weather stations and provide more accurate meteorological observation data for weather forecasts and meteorological service. The dependability of the expert knowledge rule base with certain practical value is verified.
出处 《气象科技》 2014年第4期612-616,共5页 Meteorological Science and Technology
关键词 自动气象站 数据质量控制 数据挖掘 关联规则 automatic weather station, data quality control, data mining, association rule
  • 相关文献

参考文献8

二级参考文献42

共引文献257

同被引文献100

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部