期刊文献+

Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation 被引量:2

Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation
原文传递
导出
摘要 Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature programmed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1~).5 was able to produce syngas with high selectivity in high-temperature range (800-900 ~C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation oc- curred at beginning following with selective oxidation later. Ce~_xFexO2~ oxygen carriers (x5_0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selec- tivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe* activated CeO2 and Ce3+ activated iron oxides (FeOm), and those chemical interaction greatly enhanced the oxygen mobility and selectivity. Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature programmed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1~).5 was able to produce syngas with high selectivity in high-temperature range (800-900 ~C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation oc- curred at beginning following with selective oxidation later. Ce~_xFexO2~ oxygen carriers (x5_0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selec- tivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe* activated CeO2 and Ce3+ activated iron oxides (FeOm), and those chemical interaction greatly enhanced the oxygen mobility and selectivity.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第9期824-830,共7页 稀土学报(英文版)
基金 Project supported by National Natural Science Foundation of China(51204083,51374004,51104074,51174105,51306084) the Applied Basic Research Program of Yunnan Province(2012FD016) the Candidate Talents Training Fund of Yunnan Province(2012HB009)
关键词 chemical interaction Ce-Fe mixed oxides methane selective oxidation rare earths chemical interaction Ce-Fe mixed oxides methane selective oxidation rare earths
  • 相关文献

参考文献3

二级参考文献5

共引文献32

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部