期刊文献+

C^2C^3中无偏的不可扩展最大纠缠基 被引量:3

Mutually Unbiased and Unextendible Maximally Entangled Bases in C^2C^3
下载PDF
导出
摘要 为了研究在量子计算和量子信息数据处理中起着重要作用的不可扩展最大纠缠基和无偏基,首先在C2C3空间上研究了不可扩展的最大纠缠基.其次构造了C2C3上两组无偏的不可扩展的最大纠缠基,并给出其一般形式,从而推广了文[9]在C2C3空间上构造的无偏基的结论,给出了更一般化的构造方法. To study unextendible maximally entangled bases and mutually unbiased bases which play important roles in quantum computation and quantum information processing, the unextendible maximally entangled bases in space C^2×C^3 are studied firstly. Then two sets of mutually unbiased bases from the unextendible maximally entangled bases in C^2×C^3 are constructed. The general form are presented, which extend the results in [ 9 ] and provide more generalized was of constructing.
机构地区 延边大学理学院
出处 《哈尔滨理工大学学报》 CAS 2014年第4期84-87,共4页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11361065) 吉林省自然科学基金(201215239) 延边大学科技发展计划项目(延大科合字[2013]第17号)
关键词 最大纠缠态 无偏基 不可扩展的最大纠缠基 maximally entangled state mutually unbiased bases unextendible maximally entangled basis
  • 相关文献

参考文献20

  • 1ISHIZAKA S,HIROSHIMA T.Quantum Teleportation Scheme by Selecting One of Multiple Output Ports[J].Phys.Rev.A,2009,79:042306. 被引量:1
  • 2NOH C,CHIA A,NHA H,et al.Quantum Teleportation of The Temporal Fluctuations of Light[J].Phys.Rev.Lett.,2009,102:230501. 被引量:1
  • 3BARREIRO J T,WEI T C,KWIAT P G.Beating the Channel Capacity Limit for Linear Photonic Superdense Coding[J].Nature Phys.,2008,4:282-286. 被引量:1
  • 4BENNETT C H,DIVIVCENZO D P.Quantum Information and Computation[J].Nature,2000,404:247-255. 被引量:1
  • 5HORODECKI R,HORODECKI P,HORODECKI M.Quantum Entanglement[J].Rev.Mod.Phys.,2009,81:865. 被引量:1
  • 6BENNETT C H,WIESNER S J.Communication via One-and Two-Particle Operators on Einstein-Podolsky-Rosen States[J].Phys.Rev.Lett.,1992,69:2881-2884. 被引量:1
  • 7LI Z G,ZHAO M J,FEI S M,FAN H,LIU W M.Mixed Maximally Entangled States[J].Quant.Inf.Comput.,2012,12(1-2):63-73. 被引量:1
  • 8BENNETT C H,DIVIVCENZO D P,MOR T,et al.Unextendible Product Bases and Bound Entanglement[J].Phys.Rev.Lett.,1999,82:5385-5388. 被引量:1
  • 9CHEN B,FEI S M.Unextendible Maximally Entangled Bases and Mutually Unbiased Bases[J].Phys.Rev.A,2013,88(3):034301. 被引量:1
  • 10BRAVYI S,SMOLIN J A.Unextendible Maximally Entangled Bases[J].Phys.Rev.A,2011,84(4):042306. 被引量:1

同被引文献42

  • 1Wootters W K, Fields B D. Optimal state-determination by mutually unbiased measurements[J]. Ann Phys (NY), 1989,191 (2) :363-381. 被引量:1
  • 2Adamson D B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Phys Rev Lett, 2010,105..030406. 被引量:1
  • 3Brierley S, Weigert S, Bengtsson I. All mutually unbiased bases in dimension two to five[J]. Quantum In{orm Comput, 2010,10803-820. 被引量:1
  • 4Mcnulty D, Weigert S. The limited role of mutually unbiased product bases in dimension 6[J]. J Phys A.. Math Theor, 2012,45(10) 102001. 被引量:1
  • 5Bennett C H, Wiesner S J. Communication via one-and two-particle operators on Einstein-Podolsky-Posen states [J]. PhysRevLett, 1992,692881-2884. 被引量:1
  • 6Klimov A B, Syeh D, Sanchez-Soto L L, et al. Mutually unbiased bases and generalized Bell states[J]. Phys Rev A, 2009,79:052101. 被引量:1
  • 7Caruso F, Bechmann-Pasquinucci H, Macchiavello C. Robustness of a quantum key distribution with two and three mutually unbiased bases[J]. Phys Rev A, 2005,72:032340. 被引量:1
  • 8Ghiu Iulia. Generation of all sets of mutually unbiased bases for three-qubit systems[J]. Phys Scr, 2013,T153: 014027. 被引量:1
  • 9Nizamidin H, Ma T, Fei S M. A note on mutually unbiased unextendible maximally entangled bases in C2@Ca [J]. Int J Theor Phys, 2015,54:326-333. 被引量:1
  • 10Nan H, Tao Y H, Li L S, et al. Unextendible maximally entangled bases and mutually unbiased bases in Cd@CJ' [J]. Int J Theor Phys, 2015,54:927-932. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部