期刊文献+

基于内容代表性评价的关键帧抽取 被引量:2

Keyframe Extraction Based on Representative Evaluation of Contents
下载PDF
导出
摘要 视频关键帧提取技术是对视频进行摘要来提高视频内容访问效率的一种操作。传统的方法主要采用聚类的方法,未给出可信的关键帧代表性描述。尝试基于图计算算法实现关键帧抽取,该算法可以将一段视频中候选帧及其之间的关系表示成一个相关图,通过各帧间基于相关性对相邻帧的分值分配进行迭代计算,实现候选帧内容代表性评价;并提出了一种高效的帧间相关性计算方法。该方法通过两帧图像的最大稳定颜色区域(maximally stable colour region,MSCR)的匹配情况判定它们的相关性。在测试视频上将该算法与传统算法进行了对比测试,测试的结果验证了该算法的有效性。 The keyframe extraction is a visual summary method. It enhances the accessibility to the visual content. Tra- ditional methods extract keyframes through clustering. These methods don't provide reliable descriptions of keyframe representative. This paper proposed a novel keyframe extraction method through a graph model representing the candi- date keyframes and the correlations between them. The representative of candidate keyframe was calculated through propagating grade between correlated candidate keyframes iteratively. To support the calculation of the representative, the paper introduced a correlation calculation method according to how well the maximally stable colour regions of two frames match to each other. The experiments were conducted on several test videos and the results validated our key- frame extraction method.
出处 《计算机科学》 CSCD 北大核心 2014年第8期286-288,315,共4页 Computer Science
基金 公安部重点研究计划项目(2011ZDYJGADX016) 北京高等学校青年英才计划项目(YETP1366)资助
关键词 关键帧提取 相关性计算 视频 Keyframe extraction, Correlation calculation, Video
  • 相关文献

参考文献9

  • 1庄越挺,芮勇,等.Video Key Frame Extraction by Unsupervised Clustering and Feedback Adjustment[J].Journal of Computer Science & Technology,1999,14(3):283-288. 被引量:2
  • 2Zhao L,Qi W,Li S Z,et al.Key frame extraction and shot retrieval using nearest feature line (NFL)[C]//Proceedings of the 2000 ACM workshops on Multimedia.New York:ACM,2000:217-220. 被引量:1
  • 3Pan R,Tian Y,Wang Z.Key Frame Extraction Algorithm Based on Entropy[C]//2010 International Conference on E Product EService and E Entertainment (ICEEE).IEEE,2010:1-4. 被引量:1
  • 4Liu T,Zhang H J,Qi F.A novel video key frame extraction algorithm based on perceived motion energy model[J].IEEE Transactions on Circuits and Systems for Video Technology,2003,13 (10):1006-1013. 被引量:1
  • 5Li C,Wu Y T,Yu S S,et al.Motion focusing key frame extraction and video summarization for lane surveillance system[C]// 2009 16th IEEE International Conference on Image Processing (ICIP).Cairo:IEEE,2009:4329-4332. 被引量:1
  • 6Brin S,Page L.The anatomy of a large scale hypertextual Web search engine[J].Computer Networks and ISDN Systems,1998,30(1):107-117. 被引量:1
  • 7Forssen P E.Maximally stable colour regions for recognition and matching[C]//IEEE Conference on Computer Vision and Pattern Recognition,2007(CVPR'07).IEEE,2007:1-8. 被引量:1
  • 8Matas J,Chum O,Urban M,et al.Robust wide baseline stereo from maximally stable extremal regions[J].Image and Vision Computing,2004,22(10):761-767. 被引量:1
  • 9Fischler M A,Bolles R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24 (6):381-395. 被引量:1

二级参考文献5

  • 1Zhuang Y,Proc IEEE Int Conf Image Proc,1998年 被引量:1
  • 2Zhang H,Proc IEEE Int Conf Image Proc,1997年 被引量:1
  • 3Gresle P O,The 2nd Int Conf Visual Information Systems,1997年 被引量:1
  • 4Zhang H,Pattern Recognition,1997年,30卷,4期,643页 被引量:1
  • 5Aigrain P,Multimedia Tools and Applications,1996年 被引量:1

共引文献1

同被引文献32

  • 1鲁敏,郁文贤,鲍虎军,匡纲要.基于机电跟踪的三维虚拟演播室系统[J].电子学报,2003,31(z1):2035-2039. 被引量:3
  • 2程文刚,须德,蒋轶玮,即丛妍.一种新的动态视频摘要生成方法[J].电子学报,2005,33(8):1461-1466. 被引量:6
  • 3王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 4Pritch Y,Rav-Acha A,Peleg S.Nonchronological video synopsis and indexing[J]. IEEE Trans,2008,PAMI-30(11):1971-1984. 被引量:1
  • 5Y N,C X,H S,et al.Compact video synopsis via global spatiotemporal optimization[J]. IEEE Trans,2013,TVCG-19(10):1664-1676. 被引量:1
  • 6SIMAKOV,D,CASPI,Y,SHECHTMAN,E,AND IRANI,M.Summarizing visual data using bidirectional similarity. Computer Vision and Pattern Recognition[C]. Alaska,USA:IEEE.2008.1-8. 被引量:1
  • 7Nie Y,Sun H,Li P,et al.Object movements synopsis via part assembling and stitching[J]. IEEE Trans,2014,TVCG-20(9):1303-1315. 被引量:1
  • 8Germann M,Popa T,Keiser R,et al.Novel-view synthesis of outdoor sport events using an adaptive view-dependent geometry[J]. Computer Graphics Forum,2012,31(21):325-333. 被引量:1
  • 9Saxena A,Sun M,Ng A Y.Make3D:learning 3D scene structure from a single still image[J]. IEEE Trans,2009,PAMI-31(5):824-840. 被引量:1
  • 10HARTLEY,R,ZISSERMAN,A.Multiple view geometry in computer vision[M]. Cambridge,UK:Cambridge University Press.2003:23-64. 被引量:1

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部