期刊文献+

一种面向聚焦爬虫的自然场景文本定位技术 被引量:4

Locating Natural Scenes Text for Focused Crawler
下载PDF
导出
摘要 各类视频设备采集的图像中包含了高质量的海量主题信息.尽可能全面地找到自然场景中的文本,对聚焦爬虫具有重要意义.提出一种具有较高召回率的文本定位技术,充分注意到角点强度极大、极小值对自然场景文本定位的重要作用,运用提出的角点强度增强技术和三值化方法,能够有效地分离出极大、极小值区域,从而,能够将图片中的大部分文字从复杂的背景和各种噪声中凸显出来.实验表明,该方法能够大幅提高基于角点特征的定位算法的召回率,为聚焦爬虫从大量的自然场景图片中获取重要的主题信息提供了可能. Vast amounts of natural scene pictures contain subject information with high quality, and it' s a new subject information resource for focused crawler. We propose a novel comer analysis technique for natural scene text location. Considering both the minimum and the maximum of comer intensity clearly remark the locations of text in natural scene, we non-lineally enhance the comer intensity of every pixel, and then binarize it. As we show, the binarized comer map shows the salient text blocks. The experiment result shows that our comer analysis technique can help the text localization algorithm based on its significantly improving its recall. Our corner analysis technique can help focused crawler crawl more real-time subject information from vast amounts of natural scene pictures captured by mobile and web camera.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第9期2014-2018,共5页 Journal of Chinese Computer Systems
基金 湖南省科技计划项目(2014FJ3040 2013GK3113)资助 湖南省教育厅科学研究优秀青年项目(14B104)资助 湖南省教育厅科学研究项目(13C495 14C0654) 湖南省普通高等学校教学改革研究项目(湘教通[2012]401) 湖南涉外经济学院科学研究项目(湘外经院科字[2013]2)资助
关键词 角点增强 角点强度三值化 文本定位 自然场景 聚焦爬虫 comer intensity enhancing comer intensity binarization text location complex natural scene focused crawler
  • 相关文献

参考文献3

二级参考文献69

  • 1蒋树强,杜军,黄庆明,黄铁军,高文.Visual Ontology Construction for Digitized Art Image Retrieval[J].Journal of Computer Science & Technology,2005,20(6):855-860. 被引量:7
  • 2[1]Y Wang, Z Liu, J Huang. Multimedia content analysis using audio and visual information[J]. IEEE Signal Processing Magazine, 2000, 17(6):12~36 被引量:1
  • 3[2]R Lienhart, F Stuber. Automatic text recognition in digital videos[A]. In: Proceedings of ACM Multimedia, Boston, 1996.11~20 被引量:1
  • 4[3]Zhong Yu, Zhang Hongjiang, Jain Anil K. Automatic caption localization in compressed video[J]. Pattern Analysis and Machine Intelligence, 2000, 22(4):385~392 被引量:1
  • 5[4]V Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995 被引量:1
  • 6[5]M Schmidt. Identifying speaker with support vector networks[A]. In: Proceedings of Interface'96, Sydney, 1996 被引量:1
  • 7[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features[A]. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998.137~142 被引量:1
  • 8[7]Yuan Qi. Learning algorithms for video and audio processing: Independent component analysis and support vector machine based approaches[R].College Park: University of Maryland at College Park, LAMP-TR-056(CAR-TR-951), 2000 被引量:1
  • 9[8]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: Proceedings of Computer Vision and Pattern Recognition, Puerto Rico, 1997.130~136 被引量:1
  • 10[9]C J C Burges. A tutorial on support vector machines for pattern recognition[J]. Data Mining, and Knowledge Discovery, 1998, 2(2):121~167 被引量:1

共引文献195

同被引文献15

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部