期刊文献+

工业热交换水塔的数值模拟与分析

Numerical Simulation and Analysis of Industrial Heat Exchange Water Tower
下载PDF
导出
摘要 介绍CFD软件特点和传热与流动数值模拟的理论基础,并以工业热交换水塔为例,讲述在建模过程中应该注意的问题及参数设定的技巧。通过模拟分析,得出较好的结果,克服了试验测量和理论分析中的不足,也为工业热交换水塔的设计和生产工艺可靠性评估提供了技术支持。 This paper introduces the characteristics of the software CFD and the theoretical basis of numerical simulation of heat transfer and flow. Taking industrial heat exchange water tower as an example, it also presents the points for notice and skills for parameter setting in the process of modeling. Through simulation analysis, better results can be achieved which will avoid the deficiency in experimental measurement and theoretical analysis, and provide technical support for the design and process reliability assessment of the industrial heat exchange water tower.
出处 《洛阳理工学院学报(自然科学版)》 2014年第2期89-92,共4页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词 CFD 水塔 热交换 模拟与分析 边界处理 computational fluid dynamics water tower heat exchange simulation and analysis boundary treatment
  • 相关文献

参考文献5

二级参考文献45

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393. 被引量:1
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011. 被引量:1
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179. 被引量:1
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293. 被引量:1
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980. 被引量:1
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372. 被引量:1
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136. 被引量:1
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981. 被引量:1
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571. 被引量:1
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989. 被引量:1

共引文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部