期刊文献+

名词性数据的五种代价敏感属性约简算法比较 被引量:2

Comparison of Five Cost-Sensitive Attribute Reduction Algorithms for Nominal Data
下载PDF
导出
摘要 代价敏感学习是数据挖掘研究领域最具有挑战性的问题之一。属性约简是数据挖掘中重要的经典问题。代价敏感属性约简问题是对经典属性约简问题的自然扩展,已经逐渐成为研究的热点。对当前具有代表性的5种处理名词性数据的代价敏感属性约简算法进行了分析和比较,总结了每种算法的各方面特性及不足之处,从而便于研究者对已有算法进行改进,并且进一步提出具有更好性能的新的约简算法,方便用户对算法的选择和使用。 Cost-sensitive learning is one of the most challenging problems in the current stage of data mining and machine learning research. Attribute reduction is an important classical problem of data mining. Cost-sensitive attri-bute reduction problem is an extension of traditional attribute reduction problem, and has become a hot research object. This paper analyzes and compares current typical five cost-sensitive attribute reduction algorithms for nomi-nal data, and summarizes the main features and shortcomings of five algorithms, thereby researchers can improve old algorithms or develop new effective ones. The summary can also be used to select data mining techniques for new applications.
出处 《计算机科学与探索》 CSCD 2014年第9期1137-1145,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金面上项目 福建省教育厅科技重点项目 漳州市自然科学基金~~
关键词 数据挖掘 代价敏感 属性约简 最优因子 data mining cost sensitive attribute reduction optimal factor
  • 相关文献

参考文献34

  • 1Yang Qiang, Wu Xindong. 10 challenging problems in data mining research[J]. International Journal of Information Technology & Decision Making, 2006, 5(4): 597-604. 被引量:1
  • 2Turney P D. Cost-sensitive classification: empirical evalua- tion of a hybrid genetic decision tree induction algorithm[J]. Journal of Artificial Intelligence Research, 1994, 2(1): 369-409. 被引量:1
  • 3Ling C X, Sheng V S, Yang Qiang. Test strategies for cost- sensitive decision trees[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(8): 1055-1067. 被引量:1
  • 4Domingos R Metacost: a general method for making classi- fiers cost-sensitive[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '99), San Diego, USA, Aug 15-18, 1999. New York, NY, USA: ACM, 1999: 155-164. 被引量:1
  • 5Zhou Zhihua, Liu Xuying. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, ! 8(1): 63-77. 被引量:1
  • 6Fan Wei, Stolfo S, Zhang Junxin, et al. Adacost: misclassifi- cation cost-sensitive boosting[C]//Proceedings of the 16th International Conference on Machine Learning (ICML '99), Slovenia, Jun 27-30, 1999. San Francisco, CA, USA: Mor- gan Kaufmann Publishers Inc, 1999: 97-105: 被引量:1
  • 7Turney P. Types of cost in inductive concept learning[C]// Proceedings of the Cost-Sensitive Learning Workshop at the 17th ICML-2000 Conference, Stanford, CA, Jul 2, 2000. Ottawa, CA: National Research Council of Canada, 2000. 被引量:1
  • 8Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356. 被引量:1
  • 9Yao Yiyu, Zhao Yan. Attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2008, 178(17): 3356-3373. 被引量:1
  • 10Liu Dun, Li Tianrui, Hu Pei, et al. Multiple-category classi- fication with decision-theoretic rough sets[C]//LNCS 6401: Proceedings of the 5th International Conference on Rough Set and Knowledge Technology (RSKT '10), Beijing, China, Oct 15-17, 2010. Berlin, Heidelberg: Springer-Verlag, 2010: 703-710. 被引量:1

二级参考文献25

  • 1朱洪 陈增武 等.算法设计与分析[M].上海:上海科学技术文献出版社,1989.119-120. 被引量:5
  • 2[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991 被引量:1
  • 3[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59 被引量:1
  • 4[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998 被引量:1
  • 5[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164 被引量:1
  • 6[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316 被引量:1
  • 7[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120 被引量:1
  • 8Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: Freeman, 1979 被引量:1
  • 9Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning. New York: Addison-Wesley, 1989 被引量:1
  • 10Kirkpatrick S, Gelatt C D,d Vecchi M P. Optimization by simulated annealing. Science, 1983, (4598):671-680 被引量:1

共引文献199

同被引文献21

  • 1徐章艳,刘作鹏,杨炳儒,宋威.一个复杂度为max(O(|C||U|),O(|C^2|U/C|))的快速属性约简算法[J].计算机学报,2006,29(3):391-399. 被引量:234
  • 2廖建坤,叶东毅.基于免疫粒子群优化的最小属性约简算法[J].计算机应用,2007,27(3):550-552. 被引量:17
  • 3叶东毅,廖建坤.基于二进制粒子群优化的一个最小属性约简算法[J].模式识别与人工智能,2007,20(3):295-300. 被引量:20
  • 4Kryskiewicz M. Rules in incomplete imformarion systems [ J ]. Informa- tion Sciences, 1999,113 (2) :271 - 292. 被引量:1
  • 5Turney P D. Cost-sensitive classification:empirical evaluation of a hy- brid genetic decision tree induction al-gorithm[ J]. Journal of Artificial Intelligence Research, 1994,2 ( 1 ) :369 - 409. 被引量:1
  • 6Turney P. Types of cost in inductive concept learning [ C ]//Proceed- ings of the Cost-Sensitive Learning Workshop at the 17th ICML-2000 Conference, Stanford, CA, Jul 2,2000. Ottawa, CA : National Research Council of Canada,2000 : 15 - 21. 被引量:1
  • 7Pawlak Z. Rough Sets[ J]. International Journal of Computer and infor- mation Science, 1982,11 (5) :341 - 356. 被引量:1
  • 8Min Fan, He Huaping, Qian Yuhua, et al. Test-cost-sensitive attribute reduction [ J ]. Information Sciences,2011,181 (22) :4928 - 4942. 被引量:1
  • 9Min Fan,Zhu W. Minimal cost attribute reduction through backtracking [ C ]//Proceedings of the 2011 Inter-national Conferences on Database Theory and Appliea-tion, Bio-Science and Bio-Technology ( DTA and BSBT 2011 ), Jeju Island, Korea, Dec8 - 10, 2011. Berlin, Hei-del- berg: Springer-Verlag ,2011 : 1 O0 - 107. 被引量:1
  • 10Jiabin Liu, Fan Min, Shujiao Liao, et al. Test Cost Constraint Attribute Reduction Through a Genetic Approach [ J ]. J lnf Comput Sci,2013,10 (3) :839 -849. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部