期刊文献+

数字电视节目推荐系统结构及推荐算法研究 被引量:2

The structure and algorithm of digital TV program recommendation system
下载PDF
导出
摘要 针对数字电视信息过载问题进行了数字电视节目推荐系统的结构和推荐算法研究。构造了包含信息摄取单元、系统分析单元和推荐信息发送单元的数字电视节目推荐系统结构。提出了节目类型分析法,采用节目类型阈值和节目类型聚类两种形式,分别实现了根据经验值的人工分级和任意簇数的自动聚类,达到了有效寻找观众收视兴趣与所观看节目之间的联系的效果。提出了收视行为分析法,采用收视个体行为分析和收视群体行为分析两种形式,通过观众收视数据推测观众收视兴趣,实现了给观众个体或群体推荐感兴趣的电视节目的目的。 To solve the difficulty in choosing TV programs caused by the information overload brought by the TV digitalization, the constitution and algorithm of a digital TV program recommendation system were studied. A structure of the system, consisting of the information importing unit, the system analyzing unit and the recommendation informa- tion sending unit, was put forward. To search the connection between audience interests and audience programmes, a programme type analytical method was proposed, which adopted the two forms of programme type threshold analyzing and programme type clustering analyzing to realize the artificial classification and automatic clustering respectively. A audience behaviour analytical method was presented. It adopted the two forms of audience behavior indi- viduality analyzing and audience behavior group analyzing to realize the recommendation of interesting programmes for audience individualities or audience groups through inferring audience behavior interest from audience watching data.
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第7期677-683,共7页 Chinese High Technology Letters
基金 国家广播电影电视总局科研(2011-26)资助项目
关键词 数字电视 节目推荐系统 节目类型分析 收视行为分析 digital TV, program recommendation system, program type analysis method, audience behaviour analysis method
  • 相关文献

参考文献12

  • 1Kim E, Pyo S, Park E, et M. An automatic recommenda- tion scheme of TV program contents for (IP)TV personal- ization. IEEE Transaction on Broadcasting, 2011, 57 ( 3 ) :674-684. 被引量:1
  • 2Zhang H G, Zheng S B. Personalized TV program recom- mendation based on TV-anytime metadata. In: Proceed- ings of the 9th International Symposium on ConsumerElectronics, ISCE 2005, 2005. 242-246. 被引量:1
  • 3Shi X Y, Ye H W, Gong S J. A personalized recommen- der integrating item-based and user-based collaborative filtering. In: Proceedings of the International Seminar on Business and Information Management, Wuhan, China, 2008. 264-267. 被引量:1
  • 4Guan L T, Lu H L. Recommend items for user in social networking services with CF. In: Proceedings of the In- ternational Conference on Computer Science & Service System, Nanjing, China, 2012. 1347-1350. 被引量:1
  • 5Ma C S, Shu H Y. User activity-based CF algorithm in value-added services. In : Proceedings of the International Conference on Management Science and Industrial Engi- neering, Harbin, China, 2011. 793-798. 被引量:1
  • 6Tiraweerakhajohn C, Pinngern O. Finding item neighbors in item-based collaborative filtering by adding item con- tent. In: Proceedings of the 8th lntematlonal Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004, 3:1674-1678. 被引量:1
  • 7Rohde D, Cappe O. Online maximum-likelihood estima- tion for latent factor models. In : Proceedings of the IEEE Statistical Signal Processing Workshop, Nice, France,2011. 565-568. 被引量:1
  • 8Suhrid B, Sumit C. Two of a kind or the ratings game? adaptive pairwise preferences and latent factor models. In: Proceedings of the IEEE 10th International Confer- ence on Data Mining, Sydney, Australia, 2010. 725-730. 被引量:1
  • 9徐江山,卢增祥,路海明,李衍达.数字电视节目推荐系统中的统计算法[J].清华大学学报(自然科学版),2008,48(10):1562-1564. 被引量:9
  • 10於志文,周兴社,谷建华,张勇.电视节目个性化技术的研究[J].小型微型计算机系统,2005,26(1):105-110. 被引量:8

二级参考文献12

  • 1XU Jiangshan, ZHANG Liangjie, LU Haiming, et al. The development and prospect of personalized TV program recommendation systems[C]//Proceedings of the IEEE 4th International Symposium on Mutimedia Software Engineering (MSE'02). Califormia, USA, 2002:82-89. 被引量:1
  • 2YU Zhiwen, ZHOU Xingshe. TV3P: An adaptive assistant for personalized TV [J].IEEE Transactions on Consumer Electronics, 2004, 50(1) : 393 - 399. 被引量:1
  • 3Ehrmantraut M, Harder T, Wittig H, et al. The personal electronic program guide-Towards the preselection of individual TV programs[C]// Proceedings 5th International Conference on Information and Knowledge Management (CIKM'96). Rockville, MD, 1996: 243- 250. 被引量:1
  • 4Jarvis R A, Patrick E A. Clustering using a similarity measure based on shared near neighbors [J]. IEEE Transactions on Computers, 1973, C-22(NO. 11):1025 - 1034. 被引量:1
  • 5ZHANG Hongguang, ZHENG Shibao. Personalized TV program recommendation based on TV-anytime metadata [C]//Proceedings of the 9th International Symposium on Consumer Electronics (ISCE 2005). Macao, 2005: 242 - 246. 被引量:1
  • 6Ardissono L, Geta C, Torasso P, et al. User modeling and recommendation techniques for personalized electronic program guides [C]// Personalized Digital Television. The Netherlands : Kluwer Academic Publishers, 2004:3 - 26. 被引量:1
  • 7Freund Y, Iyer R, Schapire R E, et al. An efficient boosting algorithm for combining preferences[J]. Journal of Machine Learning Research, 2003(4) : 933 - 969. 被引量:1
  • 8Kurapati K, Gutta S, Schaffer D, et al. A multi-agent TV recommender[C]//Proceedings of the UM 2001 Workshop "Personalization in Future TV". Sonthofen, Germany, July 2001. 被引量:1
  • 9朱培栋,nudt.edu.cn,卢锡城,nudt.edu.cn,周兴铭,nudt.edu.cn.基于客户行为模式的Web文档预送[J].软件学报,1999,10(11):1142-1147. 被引量:21
  • 10孟宪福,高晓琳,王蒴,关迎晖.网上Bookmark服务系统及其基于Web挖掘的推荐引擎[J].小型微型计算机系统,2001,22(12):1485-1488. 被引量:10

共引文献15

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部