期刊文献+

基于特征配准的ISAR图像方位定标方法 被引量:5

A Novel Cross-range Scaling Algorithm for ISAR Images Based on Feature Registration
下载PDF
导出
摘要 逆合成孔径雷达(ISAR)成像利用目标相对雷达视线的姿态变化形成的合成孔径获得方位高分辨,成像方位为多普勒轴,通常需要估计目标的有效转动速度以实现ISAR图像的方位定标从而体现目标真实尺寸。现有算法通常利用信号的运动参数估计和图像整体配准。该文提出利用子孔径ISAR图像的特征提取和配对,根据特征点坐标估计目标的有效转角速度。首先利用尺度不变特征变换(SIFT)和快速鲁棒特征(SURF)对两幅ISAR图像进行特征点提取;然后分别采用最短欧氏距离和随机采样一致性(RANSAC)进行特征点的匹配和失配点的剔除;最后根据配对特征点的坐标和能量估算有效转角速度,实现ISAR图像方位定标。仿真数据和实测数据验证了该算法的精确性和稳健性。 As Inverse SAR (ISAR) imaging utilizes synthetic aperture with aspect's changes related to the Radar Line of Sight (RLOS) to acquire azimuth resolution, the accurate estimation of rotated velocity is pivotal for the geometric scaling of ISAR images to measure the real size of a target. Compared with current methods by estimating motional parameters and the integrated images registration, this paper proposes a novel algorithm by extracting and registering the interested points of ISAR images from sub-aperture data, which provides the points' coordinate-locations to calculate the virtual rotated velocity. First, adequate interested points are extracted from two sub-aperture images by Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). Those points are then pinpointed by matching and re-matching with the minimum Euclid- distance and RANdom SAmple Consensus (RANSAC) principles, respectively. Finally, the rotated velocity, a premise to acquire the cross-resolution, can be estimated to achieve the precise target scaling. Simulated and real data validate the effectiveness and robustness of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第9期2173-2179,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61301280 61222108)资助课题
关键词 逆合成孔径雷达 尺度不变特征变换 快速鲁棒特征 转角估计 方位定标 Inverse SAR (ISAR) Scale Invariant Feature Transform (SIFT) Speeded-Up Robust Features (SURF) Rotated angle estimation Azimuth scaling
  • 相关文献

参考文献19

  • 1保铮,邢孟道,王彤编著..雷达成像技术[M].北京:电子工业出版社,2005:336.
  • 2邱晓晖,朱兆达.一种用于ISAR成像的转角采样不均匀补偿方法[J].现代雷达,1996,18(3):1-6. 被引量:1
  • 3姜正林,保铮.低分辨雷达目标成像的横向距离定标[J].电子与信息学报,2001,23(4):365-372. 被引量:5
  • 4Martorella M. Novel approach for ISAR image cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 281-294. 被引量:1
  • 5王勇,姜义成.一种估计ISAR成像转角的新方法[J].电子与信息学报,2007,29(3):521-523. 被引量:14
  • 6Kim M, Wu Guo-rong, Yap P T, et al.. A general fast registration framework by learning deformation appearance correlation[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1823-1833. 被引量:1
  • 7Lammers U H W and Marr R A. Doppler imaging based on radar target precession[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 166-173. 被引量:1
  • 8Reddy B S and Chatterji B N. An FFT-based technique for translation, rotation, and scale-invariant image registration [J]. IEEE Transactions on Pattern, Analysis and Machine Intelligence, 1996, 5(8): 1266-1271. 被引量:1
  • 9Xiong Zhen and Zhang Yun. A novel interest-point-matching algorithm for high-resolution satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4189-4200. 被引量:1
  • 10Lowe D G. Distinctive image features from scale-invariant key-points]J]. International Journal of Computer Version, 2004, 60(2): 91-110. 被引量:1

二级参考文献29

  • 1邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报,2001,29(z1):1807-1811. 被引量:30
  • 2Ma C Z, Yeo T S, Tan C S, et al. Sparse Array 3-D ISAR Imaging Based on Minimum Likelihood Estimation and CLEAN Technique[J]. IEEE Trans on Image Processing, 2010, 19(8) : 2127-2142. 被引量:1
  • 3Chen C C, Andrews H C. Target-motion-induced Radar Imaging[J].IEEE Trans on Aerospace Electronics System, 1980, 16(1): 2-14. 被引量:1
  • 4Wang Genyuan, Bao Zheng. The Minimum Entropy Criterion of Range Alignment in ISAR Motion Compensation [C/ OL].[2010-12-20]. http://ieeexplore, ieee. org/stamp/stamp, jsp?tp= &arnumber= 629131 &userType= inst. 被引量:1
  • 5Wahl D E, Eichel P H, Ghiglia D C, et al. Phase Gradient Autofocus--a Robust Tool for High Resolution SAR Phase Correction[J]. IEEE Trans on Aerospace Electronics System, 1994, 30(3) : 827-834. 被引量:1
  • 6Ye Wei, Yeo T S, Bao Zheng. Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR Autofocus [J]. IEEE Trans on Geoscience Remote Sensing, 1999, 37(5) : 2487-2494. 被引量:1
  • 7Kragh T J, Kharbouch A A. Monotonic Iterative Algorithm for Minimum-entropy Autofocus [OL]. [2010-12-05]. http://www. 11, mit. edu/asap/asap 06/pdf/Papers/27_Kragh Pa. pdf . 被引量:1
  • 8Berizzi F, Cosini G. Autofocus of Inverse Synthetic Aperture Radar Images Using Contrast Optimization [J]. IEEE Trans on Aerospace Electronics System, 1996, 32(3): 1185-1191. 被引量:1
  • 9Chen C C and Andrews H C.Targets-motion-induced radar imaging.IEEE Trans.on AES,1980,16(1):2-14. 被引量:1
  • 10Werness S,et al..Moving target imaging algorithm for SAR data.IEEE Trans.on AES,1990,26(1):57-67. 被引量:1

共引文献32

同被引文献70

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部