期刊文献+

结合图像融合与分割的快速去雾 被引量:9

Fast haze removal method based on image fusion and segmentation
原文传递
导出
摘要 目的针对机器视觉系统在雾天条件下采集的图像存在对比度低、细节模糊的问题,提出一种结合图像融合与分割的场景复原方法。方法基于光学反射成像的物理特性以及形态学运算分别获取雾气浓度的近似估计,计算图像的局部方差并利用加权融合的方法得出准确的大气耗散函数,通过分割雾气最浓区域或者天空区域求得精确的大气光值,最后由大气散射模型计算复原图像并进行亮度和色调的调整。结果该方法可以有效避免光晕效应和天空颜色失真等不足,能快速复原场景的对比度和颜色。结论实验结果表明,该方法的场景适应能力较强,复原效果和计算速度相比于前人的方法均有不同程度的提高。 Objective A scene restoration algorithm based on image fusion and segmentation is proposed to enhance the contrast and detail information of haze images captured by a machine vision system.Method Haze density is roughly estimated based on the physical properties of the optical reflectance imaging and morphology operation.The atmospheric veil is then estimated accurately by using weighted image fusion and by computing for the local variance.The global atmospheric light is obtained by segmenting the most hazed region or the sky part of the image.Finally,the ideal result is obtained through a physical model,and the brightness and chroma of the images are adjusted via tone mapping.Result This method can avoid halo artifacts or color distortion while achieving a good restoration of contrast and color fidelity.Conclusion Results show that the proposed method has robust scene adaptability and achieves different degrees of improvement in terms of restoration effect and computation speed.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第8期1155-1161,共7页 Journal of Image and Graphics
基金 福建省科技计划重点项目(2013H0030) 中央高校基本科研专项(JB-ZR1145)
关键词 去雾 大气散射模型 大气耗散函数 图像融合 图像分割 haze removal atmospheric scattering model atmospheric veil image fusion image segmentation
  • 相关文献

参考文献4

二级参考文献52

  • 1Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254. 被引量:1
  • 2Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193. 被引量:1
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. 被引量:1
  • 4Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332. 被引量:1
  • 5Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525. 被引量:1
  • 6Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45. 被引量:1
  • 7Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991. 被引量:1
  • 8Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179. 被引量:1
  • 9Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467. 被引量:1
  • 10Narasimhan S G, Nayar S K. Interactive (de) weathering of an image using physical models. In: Proceedings of the ICCV Workshop on Color and Photometric Methods in Computer Vision. Nice, France: IEEE, 2003. 1387-1394. 被引量:1

共引文献275

同被引文献99

引证文献9

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部